- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- Administrator's Guide
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
",t};e.buildCustomizationMenuUi=t;function n(e){let t='
",t}function s(e){let n=e.filter.currentValue||e.filter.defaultValue,t='${e.filter.label}
`,e.filter.options.forEach(s=>{let o=s.id===n;t+=``}),t+="${e.filter.label}
`,t+=`Feature flag tracking in Datadog helps you correlate flag changes with system performance issues, accelerating incident resolution. By tracking when flags are toggled, updated, or rolled out, you can identify whether a feature flag change caused a performance degradation or outage.
With feature flag tracking, you can:
Datadog supports tracking LaunchDarkly flags using the LaunchDarkly integration or tracking feature flags from other feature flag providers using the Events API.
To track LaunchDarkly feature flags in your services’ Change Tracking timeline:
<your-feature-flag-name>
> Settings in LaunchDarkly.service
and value <your-service-name>
, matching your Datadog service name exactly.For example, to link a flag to the payments_api
service used in the examples below, you would set the tag value to payments_api
. After you submit the event, you can navigate to the Software Catalog, select the payments_api
service, and see the fallback_payments_test
feature flag event in the Change Tracking timeline.
Send feature flag events from any provider using the Events API. Create a change
category event and include a service tag to link the event to your service.
Example request:
{
"data": {
"attributes": {
"aggregation_key": "string",
"attributes": {
"author": {
"name": "datadog@datadog.com",
"type": "user"
},
"change_metadata": {
"dd": {
"team": "datadog_team",
"user_email": "datadog@datadog.com",
"user_id": "datadog_user_id",
"user_name": "datadog_username"
},
"resource_link": "datadog.com/feature/fallback_payments_test"
},
"changed_resource": {
"name": "fallback_payments_test",
"type": "feature_flag"
},
"impacted_resources": [
{
"name": "payments_api",
"type": "service"
}
],
"new_value": {
"enabled": true,
"percentage": "50%",
"rule": {
"datacenter": "devcycle.us1.prod"
}
},
"prev_value": {
"enabled": true,
"percentage": "10%",
"rule": {
"datacenter": "devcycle.us1.prod"
}
}
},
"category": "change",
"message": "payment_processed feature flag has been enabled",
"tags": [
"env:test"
],
"timestamp": "string",
"title": "payment_processed feature flag updated"
},
"type": "event"
}
}
In addition to tracking when a feature flag’s configuration changes using the LaunchDarkly integration or the Events API, you can also automatically identify every service that evaluates a flag. This auto-enrichment provides deeper context by using APM traces to show the real-time impact of a flag, which is especially useful when a single flag is used by multiple services.
To automatically detect services using a feature flag, instrument your feature flag evaluation code with the APM tracing library. This allows Datadog to automatically detect all services that evaluate a specific flag, even if they weren’t originally tagged.
experiments.IsEnabled
to track feature flag evaluations.experiment_id:<flag-id>
, where <flag-id>
matches the feature flag ID.For example:
# Trace feature flag evaluation to enable auto-detection
with tracer.trace("experiments.IsEnabled") as span:
span.set_tag("experiment_id", "fallback_payments_test")
# Your existing feature flag evaluation code
flag_value = evaluate_flag("fallback_payments_test")
When you identify that a feature flag change caused an issue, you can immediately toggle its state without leaving Datadog. This feature uses Workflow Automation to toggle LaunchDarkly flags directly from Change Tracking timelines.
To set up feature flag toggles using Workflow Automation:
To toggle feature flags on or off from inside Datadog:
추가 유용한 문서, 링크 및 기사: