Cette page n'est pas encore disponible en français, sa traduction est en cours.
Si vous avez des questions ou des retours sur notre projet de traduction actuel, n'hésitez pas à nous contacter.

Code Analysis is not available for the site.

Try the Beta!

Code Analysis is in public beta.

Overview

To set up Datadog Software Composition Analysis, navigate to Software Delivery > Code Analysis.

Select where to run Software Composition Analysis scans

Scan with Datadog-hosted scanning

SCA scans can be run directly on Datadog’s infrastructure. To get started, navigate to the Code Analysis page.

Scan in CI pipelines

SCA can be run in your CI pipelines using the datadog-ci CLI. Configure your Datadog API and application keys (requires the code_analysis_read scope) and run SCA jobs in the respective CI provider.

See the documentation for your CI provider:


Select your source code management provider

Datadog SCA supports all source code management providers, with native support for GitHub.

Set up the GitHub integration

If GitHub is your source code management provider, you must configure a GitHub App using the GitHub integration tile and set up the source code integration to see inline code snippets and enable pull request comments.

When installing a GitHub App, the following permissions are required to enable certain features:

  • Content: Read, which allows you to see code snippets displayed in Datadog.
  • Pull Request: Read & Write, which allows Datadog to add feedback for violations directly in your pull requests using pull request comments.

Other source code management providers

If you are using another source code management provider, configure SCA to run in your CI pipelines using the datadog-ci CLI tool and upload the results to Datadog. You must run an analysis of your repository on the default branch before results can begin appearing on the Code Analysis page.

Further Reading

PREVIEWING: esther/docs-9518-update-example-control-sensitive-log-data