Logs Metrics

Manage configuration of log-based metrics for your organization.

GET https://api.ap1.datadoghq.com/api/v2/logs/config/metricshttps://api.datadoghq.eu/api/v2/logs/config/metricshttps://api.ddog-gov.com/api/v2/logs/config/metricshttps://api.datadoghq.com/api/v2/logs/config/metricshttps://api.us3.datadoghq.com/api/v2/logs/config/metricshttps://api.us5.datadoghq.com/api/v2/logs/config/metrics

Présentation

Get the list of configured log-based metrics with their definitions. This endpoint requires the logs_read_config permission.

Réponse

OK

All the available log-based metric objects.

Expand All

Champ

Type

Description

data

[object]

A list of log-based metric objects.

attributes

object

The object describing a Datadog log-based metric.

compute

object

The compute rule to compute the log-based metric.

aggregation_type

enum

The type of aggregation to use. Allowed enum values: count,distribution

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

path

string

The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

group_by

[object]

The rules for the group by.

path

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

id

string

The name of the log-based metric.

type

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": [
    {
      "attributes": {
        "compute": {
          "aggregation_type": "distribution",
          "include_percentiles": true,
          "path": "@duration"
        },
        "filter": {
          "query": "service:web* AND @http.status_code:[200 TO 299]"
        },
        "group_by": [
          {
            "path": "@http.status_code",
            "tag_name": "status_code"
          }
        ]
      },
      "id": "logs.page.load.count",
      "type": "logs_metrics"
    }
  ]
}

Not Authorized

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Too many requests

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Exemple de code

"""
Get all log-based metrics returns "OK" response
"""

from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    response = api_instance.list_logs_metrics()

    print(response)

Instructions

First install the library and its dependencies and then save the example to example.py and run following commands:

    
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"

POST https://api.ap1.datadoghq.com/api/v2/logs/config/metricshttps://api.datadoghq.eu/api/v2/logs/config/metricshttps://api.ddog-gov.com/api/v2/logs/config/metricshttps://api.datadoghq.com/api/v2/logs/config/metricshttps://api.us3.datadoghq.com/api/v2/logs/config/metricshttps://api.us5.datadoghq.com/api/v2/logs/config/metrics

Présentation

Create a metric based on your ingested logs in your organization. Returns the log-based metric object from the request body when the request is successful. This endpoint requires the logs_generate_metrics permission.

Requête

Body Data (required)

The definition of the new log-based metric.

Expand All

Champ

Type

Description

data [required]

object

The new log-based metric properties.

attributes [required]

object

The object describing the Datadog log-based metric to create.

compute [required]

object

The compute rule to compute the log-based metric.

aggregation_type [required]

enum

The type of aggregation to use. Allowed enum values: count,distribution

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

path

string

The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

default: *

group_by

[object]

The rules for the group by.

path [required]

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

id [required]

string

The name of the log-based metric.

type [required]

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": {
    "id": "ExampleLogsMetric",
    "type": "logs_metrics",
    "attributes": {
      "compute": {
        "aggregation_type": "distribution",
        "include_percentiles": true,
        "path": "@duration"
      }
    }
  }
}

Réponse

OK

The log-based metric object.

Expand All

Champ

Type

Description

data

object

The log-based metric properties.

attributes

object

The object describing a Datadog log-based metric.

compute

object

The compute rule to compute the log-based metric.

aggregation_type

enum

The type of aggregation to use. Allowed enum values: count,distribution

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

path

string

The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

group_by

[object]

The rules for the group by.

path

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

id

string

The name of the log-based metric.

type

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": {
    "attributes": {
      "compute": {
        "aggregation_type": "distribution",
        "include_percentiles": true,
        "path": "@duration"
      },
      "filter": {
        "query": "service:web* AND @http.status_code:[200 TO 299]"
      },
      "group_by": [
        {
          "path": "@http.status_code",
          "tag_name": "status_code"
        }
      ]
    },
    "id": "logs.page.load.count",
    "type": "logs_metrics"
  }
}

Bad Request

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Not Authorized

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Conflict

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Too many requests

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Exemple de code

"""
Create a log-based metric returns "OK" response
"""

from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_compute import LogsMetricCompute
from datadog_api_client.v2.model.logs_metric_compute_aggregation_type import LogsMetricComputeAggregationType
from datadog_api_client.v2.model.logs_metric_create_attributes import LogsMetricCreateAttributes
from datadog_api_client.v2.model.logs_metric_create_data import LogsMetricCreateData
from datadog_api_client.v2.model.logs_metric_create_request import LogsMetricCreateRequest
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType

body = LogsMetricCreateRequest(
    data=LogsMetricCreateData(
        id="ExampleLogsMetric",
        type=LogsMetricType.LOGS_METRICS,
        attributes=LogsMetricCreateAttributes(
            compute=LogsMetricCompute(
                aggregation_type=LogsMetricComputeAggregationType.DISTRIBUTION,
                include_percentiles=True,
                path="@duration",
            ),
        ),
    ),
)

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    response = api_instance.create_logs_metric(body=body)

    print(response)

Instructions

First install the library and its dependencies and then save the example to example.py and run following commands:

    
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"

GET https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}

Présentation

Get a specific log-based metric from your organization. This endpoint requires the logs_read_config permission.

Arguments

Paramètres du chemin

Nom

Type

Description

metric_id [required]

string

The name of the log-based metric.

Réponse

OK

The log-based metric object.

Expand All

Champ

Type

Description

data

object

The log-based metric properties.

attributes

object

The object describing a Datadog log-based metric.

compute

object

The compute rule to compute the log-based metric.

aggregation_type

enum

The type of aggregation to use. Allowed enum values: count,distribution

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

path

string

The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

group_by

[object]

The rules for the group by.

path

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

id

string

The name of the log-based metric.

type

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": {
    "attributes": {
      "compute": {
        "aggregation_type": "distribution",
        "include_percentiles": true,
        "path": "@duration"
      },
      "filter": {
        "query": "service:web* AND @http.status_code:[200 TO 299]"
      },
      "group_by": [
        {
          "path": "@http.status_code",
          "tag_name": "status_code"
        }
      ]
    },
    "id": "logs.page.load.count",
    "type": "logs_metrics"
  }
}

Not Authorized

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Not Found

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Too many requests

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Exemple de code

"""
Get a log-based metric returns "OK" response
"""

from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi

# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    response = api_instance.get_logs_metric(
        metric_id=LOGS_METRIC_DATA_ID,
    )

    print(response)

Instructions

First install the library and its dependencies and then save the example to example.py and run following commands:

    
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"

PATCH https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}

Présentation

Update a specific log-based metric from your organization. Returns the log-based metric object from the request body when the request is successful. This endpoint requires the logs_generate_metrics permission.

Arguments

Paramètres du chemin

Nom

Type

Description

metric_id [required]

string

The name of the log-based metric.

Requête

Body Data (required)

New definition of the log-based metric.

Expand All

Champ

Type

Description

data [required]

object

The new log-based metric properties.

attributes [required]

object

The log-based metric properties that will be updated.

compute

object

The compute rule to compute the log-based metric.

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

default: *

group_by

[object]

The rules for the group by.

path [required]

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

type [required]

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": {
    "type": "logs_metrics",
    "attributes": {
      "filter": {
        "query": "service:web* AND @http.status_code:[200 TO 299]-updated"
      }
    }
  }
}
{
  "data": {
    "type": "logs_metrics",
    "attributes": {
      "compute": {
        "include_percentiles": false
      }
    }
  }
}

Réponse

OK

The log-based metric object.

Expand All

Champ

Type

Description

data

object

The log-based metric properties.

attributes

object

The object describing a Datadog log-based metric.

compute

object

The compute rule to compute the log-based metric.

aggregation_type

enum

The type of aggregation to use. Allowed enum values: count,distribution

include_percentiles

boolean

Toggle to include or exclude percentile aggregations for distribution metrics. Only present when the aggregation_type is distribution.

path

string

The path to the value the log-based metric will aggregate on (only used if the aggregation type is a "distribution").

filter

object

The log-based metric filter. Logs matching this filter will be aggregated in this metric.

query

string

The search query - following the log search syntax.

group_by

[object]

The rules for the group by.

path

string

The path to the value the log-based metric will be aggregated over.

tag_name

string

Eventual name of the tag that gets created. By default, the path attribute is used as the tag name.

id

string

The name of the log-based metric.

type

enum

The type of the resource. The value should always be logs_metrics. Allowed enum values: logs_metrics

default: logs_metrics

{
  "data": {
    "attributes": {
      "compute": {
        "aggregation_type": "distribution",
        "include_percentiles": true,
        "path": "@duration"
      },
      "filter": {
        "query": "service:web* AND @http.status_code:[200 TO 299]"
      },
      "group_by": [
        {
          "path": "@http.status_code",
          "tag_name": "status_code"
        }
      ]
    },
    "id": "logs.page.load.count",
    "type": "logs_metrics"
  }
}

Bad Request

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Not Authorized

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Not Found

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Too many requests

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Exemple de code

"""
Update a log-based metric returns "OK" response
"""

from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_filter import LogsMetricFilter
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType
from datadog_api_client.v2.model.logs_metric_update_attributes import LogsMetricUpdateAttributes
from datadog_api_client.v2.model.logs_metric_update_data import LogsMetricUpdateData
from datadog_api_client.v2.model.logs_metric_update_request import LogsMetricUpdateRequest

# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY = environ["LOGS_METRIC_DATA_ATTRIBUTES_FILTER_QUERY"]
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]

body = LogsMetricUpdateRequest(
    data=LogsMetricUpdateData(
        type=LogsMetricType.LOGS_METRICS,
        attributes=LogsMetricUpdateAttributes(
            filter=LogsMetricFilter(
                query="service:web* AND @http.status_code:[200 TO 299]-updated",
            ),
        ),
    ),
)

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    response = api_instance.update_logs_metric(metric_id=LOGS_METRIC_DATA_ID, body=body)

    print(response)
"""
Update a log-based metric with include_percentiles field returns "OK" response
"""

from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi
from datadog_api_client.v2.model.logs_metric_type import LogsMetricType
from datadog_api_client.v2.model.logs_metric_update_attributes import LogsMetricUpdateAttributes
from datadog_api_client.v2.model.logs_metric_update_compute import LogsMetricUpdateCompute
from datadog_api_client.v2.model.logs_metric_update_data import LogsMetricUpdateData
from datadog_api_client.v2.model.logs_metric_update_request import LogsMetricUpdateRequest

# there is a valid "logs_metric_percentile" in the system
LOGS_METRIC_PERCENTILE_DATA_ID = environ["LOGS_METRIC_PERCENTILE_DATA_ID"]

body = LogsMetricUpdateRequest(
    data=LogsMetricUpdateData(
        type=LogsMetricType.LOGS_METRICS,
        attributes=LogsMetricUpdateAttributes(
            compute=LogsMetricUpdateCompute(
                include_percentiles=False,
            ),
        ),
    ),
)

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    response = api_instance.update_logs_metric(metric_id=LOGS_METRIC_PERCENTILE_DATA_ID, body=body)

    print(response)

Instructions

First install the library and its dependencies and then save the example to example.py and run following commands:

    
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"

DELETE https://api.ap1.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.eu/api/v2/logs/config/metrics/{metric_id}https://api.ddog-gov.com/api/v2/logs/config/metrics/{metric_id}https://api.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us3.datadoghq.com/api/v2/logs/config/metrics/{metric_id}https://api.us5.datadoghq.com/api/v2/logs/config/metrics/{metric_id}

Présentation

Delete a specific log-based metric from your organization. This endpoint requires the logs_generate_metrics permission.

Arguments

Paramètres du chemin

Nom

Type

Description

metric_id [required]

string

The name of the log-based metric.

Réponse

OK

Not Authorized

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Not Found

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Too many requests

API error response.

Expand All

Champ

Type

Description

errors [required]

[string]

A list of errors.

{
  "errors": [
    "Bad Request"
  ]
}

Exemple de code

"""
Delete a log-based metric returns "OK" response
"""

from os import environ
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v2.api.logs_metrics_api import LogsMetricsApi

# there is a valid "logs_metric" in the system
LOGS_METRIC_DATA_ID = environ["LOGS_METRIC_DATA_ID"]

configuration = Configuration()
with ApiClient(configuration) as api_client:
    api_instance = LogsMetricsApi(api_client)
    api_instance.delete_logs_metric(
        metric_id=LOGS_METRIC_DATA_ID,
    )

Instructions

First install the library and its dependencies and then save the example to example.py and run following commands:

    
DD_SITE="datadoghq.comus3.datadoghq.comus5.datadoghq.comdatadoghq.euap1.datadoghq.comddog-gov.com" DD_API_KEY="<API-KEY>" DD_APP_KEY="<APP-KEY>" python3 "example.py"

PREVIEWING: ida.adjivon/DOCS-9781-V2