aws_comprehend_document_classifier

account_id

Type: STRING

classifier_metadata

Type: STRUCT
Provider name: ClassifierMetadata
Description: Information about the document classifier, including the number of documents used for training the classifier, the number of documents used for test the classifier, and an accuracy rating.

  • evaluation_metrics
    Type: STRUCT
    Provider name: EvaluationMetrics
    Description: Describes the result metrics for the test data associated with an documentation classifier.
    • accuracy
      Type: DOUBLE
      Provider name: Accuracy
      Description: The fraction of the labels that were correct recognized. It is computed by dividing the number of labels in the test documents that were correctly recognized by the total number of labels in the test documents.
    • f1_score
      Type: DOUBLE
      Provider name: F1Score
      Description: A measure of how accurate the classifier results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.
    • hamming_loss
      Type: DOUBLE
      Provider name: HammingLoss
      Description: Indicates the fraction of labels that are incorrectly predicted. Also seen as the fraction of wrong labels compared to the total number of labels. Scores closer to zero are better.
    • micro_f1_score
      Type: DOUBLE
      Provider name: MicroF1Score
      Description: A measure of how accurate the classifier results are for the test data. It is a combination of the Micro Precision and Micro Recall values. The Micro F1Score is the harmonic mean of the two scores. The highest score is 1, and the worst score is 0.
    • micro_precision
      Type: DOUBLE
      Provider name: MicroPrecision
      Description: A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones. Unlike the Precision metric which comes from averaging the precision of all available labels, this is based on the overall score of all precision scores added together.
    • micro_recall
      Type: DOUBLE
      Provider name: MicroRecall
      Description: A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results. Specifically, this indicates how many of the correct categories in the text that the model can predict. It is a percentage of correct categories in the text that can found. Instead of averaging the recall scores of all labels (as with Recall), micro Recall is based on the overall score of all recall scores added together.
    • precision
      Type: DOUBLE
      Provider name: Precision
      Description: A measure of the usefulness of the classifier results in the test data. High precision means that the classifier returned substantially more relevant results than irrelevant ones.
    • recall
      Type: DOUBLE
      Provider name: Recall
      Description: A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results.
  • number_of_labels
    Type: INT32
    Provider name: NumberOfLabels
    Description: The number of labels in the input data.
  • number_of_test_documents
    Type: INT32
    Provider name: NumberOfTestDocuments
    Description: The number of documents in the input data that were used to test the classifier. Typically this is 10 to 20 percent of the input documents, up to 10,000 documents.
  • number_of_trained_documents
    Type: INT32
    Provider name: NumberOfTrainedDocuments
    Description: The number of documents in the input data that were used to train the classifier. Typically this is 80 to 90 percent of the input documents.

data_access_role_arn

Type: STRING
Provider name: DataAccessRoleArn
Description: The Amazon Resource Name (ARN) of the IAM role that grants Amazon Comprehend read access to your input data.

document_classifier_arn

Type: STRING
Provider name: DocumentClassifierArn
Description: The Amazon Resource Name (ARN) that identifies the document classifier.

end_time

Type: TIMESTAMP
Provider name: EndTime
Description: The time that training the document classifier completed.

flywheel_arn

Type: STRING
Provider name: FlywheelArn
Description: The Amazon Resource Number (ARN) of the flywheel

input_data_config

Type: STRUCT
Provider name: InputDataConfig
Description: The input data configuration that you supplied when you created the document classifier for training.

  • augmented_manifests
    Type: UNORDERED_LIST_STRUCT
    Provider name: AugmentedManifests
    Description: A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth. This parameter is required if you set DataFormat to AUGMENTED_MANIFEST.
    • annotation_data_s3_uri
      Type: STRING
      Provider name: AnnotationDataS3Uri
      Description: The S3 prefix to the annotation files that are referred in the augmented manifest file.
    • attribute_names
      Type: UNORDERED_LIST_STRING
      Provider name: AttributeNames
      Description: The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job. If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth. If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.
    • document_type
      Type: STRING
      Provider name: DocumentType
      Description: The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don’t specify, the default is PlainTextDocument.
      • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.
      • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.
    • s3_uri
      Type: STRING
      Provider name: S3Uri
      Description: The Amazon S3 location of the augmented manifest file.
    • source_documents_s3_uri
      Type: STRING
      Provider name: SourceDocumentsS3Uri
      Description: The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.
    • split
      Type: STRING
      Provider name: Split
      Description: The purpose of the data you’ve provided in the augmented manifest. You can either train or test this data. If you don’t specify, the default is train. TRAIN - all of the documents in the manifest will be used for training. If no test documents are provided, Amazon Comprehend will automatically reserve a portion of the training documents for testing. TEST - all of the documents in the manifest will be used for testing.
  • data_format
    Type: STRING
    Provider name: DataFormat
    Description: The format of your training data:
    • COMPREHEND_CSV: A two-column CSV file, where labels are provided in the first column, and documents are provided in the second. If you use this value, you must provide the S3Uri parameter in your request.
    • AUGMENTED_MANIFEST: A labeled dataset that is produced by Amazon SageMaker Ground Truth. This file is in JSON lines format. Each line is a complete JSON object that contains a training document and its associated labels. If you use this value, you must provide the AugmentedManifests parameter in your request.
    If you don’t specify a value, Amazon Comprehend uses COMPREHEND_CSV as the default.
  • document_reader_config
    Type: STRUCT
    Provider name: DocumentReaderConfig
    • document_read_action
      Type: STRING
      Provider name: DocumentReadAction
      Description: This field defines the Amazon Textract API operation that Amazon Comprehend uses to extract text from PDF files and image files. Enter one of the following values:
      • TEXTRACT_DETECT_DOCUMENT_TEXT - The Amazon Comprehend service uses the DetectDocumentText API operation.
      • TEXTRACT_ANALYZE_DOCUMENT - The Amazon Comprehend service uses the AnalyzeDocument API operation.
    • document_read_mode
      Type: STRING
      Provider name: DocumentReadMode
      Description: Determines the text extraction actions for PDF files. Enter one of the following values:
      • SERVICE_DEFAULT - use the Amazon Comprehend service defaults for PDF files.
      • FORCE_DOCUMENT_READ_ACTION - Amazon Comprehend uses the Textract API specified by DocumentReadAction for all PDF files, including digital PDF files.
    • feature_types
      Type: UNORDERED_LIST_STRING
      Provider name: FeatureTypes
      Description: Specifies the type of Amazon Textract features to apply. If you chose TEXTRACT_ANALYZE_DOCUMENT as the read action, you must specify one or both of the following values:
      • TABLES - Returns additional information about any tables that are detected in the input document.
      • FORMS - Returns additional information about any forms that are detected in the input document.
  • document_type
    Type: STRING
    Provider name: DocumentType
    Description: The type of input documents for training the model. Provide plain-text documents to create a plain-text model, and provide semi-structured documents to create a native document model.
  • documents
    Type: STRUCT
    Provider name: Documents
    Description: The S3 location of the training documents. This parameter is required in a request to create a native document model.
    • s3_uri
      Type: STRING
      Provider name: S3Uri
      Description: The S3 URI location of the training documents specified in the S3Uri CSV file.
    • test_s3_uri
      Type: STRING
      Provider name: TestS3Uri
      Description: The S3 URI location of the test documents included in the TestS3Uri CSV file. This field is not required if you do not specify a test CSV file.
  • label_delimiter
    Type: STRING
    Provider name: LabelDelimiter
    Description: Indicates the delimiter used to separate each label for training a multi-label classifier. The default delimiter between labels is a pipe (|). You can use a different character as a delimiter (if it’s an allowed character) by specifying it under Delimiter for labels. If the training documents use a delimiter other than the default or the delimiter you specify, the labels on that line will be combined to make a single unique label, such as LABELLABELLABEL.
  • s3_uri
    Type: STRING
    Provider name: S3Uri
    Description: The Amazon S3 URI for the input data. The S3 bucket must be in the same Region as the API endpoint that you are calling. The URI can point to a single input file or it can provide the prefix for a collection of input files. For example, if you use the URI S3://bucketName/prefix, if the prefix is a single file, Amazon Comprehend uses that file as input. If more than one file begins with the prefix, Amazon Comprehend uses all of them as input. This parameter is required if you set DataFormat to COMPREHEND_CSV.
  • test_s3_uri
    Type: STRING
    Provider name: TestS3Uri
    Description: This specifies the Amazon S3 location that contains the test annotations for the document classifier. The URI must be in the same Amazon Web Services Region as the API endpoint that you are calling.

language_code

Type: STRING
Provider name: LanguageCode
Description: The language code for the language of the documents that the classifier was trained on.

message

Type: STRING
Provider name: Message
Description: Additional information about the status of the classifier.

mode

Type: STRING
Provider name: Mode
Description: Indicates the mode in which the specific classifier was trained. This also indicates the format of input documents and the format of the confusion matrix. Each classifier can only be trained in one mode and this cannot be changed once the classifier is trained.

model_kms_key_id

Type: STRING
Provider name: ModelKmsKeyId
Description: ID for the KMS key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats:

  • KMS Key ID: “1234abcd-12ab-34cd-56ef-1234567890ab”
  • Amazon Resource Name (ARN) of a KMS Key: “arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab”

output_data_config

Type: STRUCT
Provider name: OutputDataConfig
Description: Provides output results configuration parameters for custom classifier jobs.

  • flywheel_stats_s3_prefix
    Type: STRING
    Provider name: FlywheelStatsS3Prefix
    Description: The Amazon S3 prefix for the data lake location of the flywheel statistics.
  • kms_key_id
    Type: STRING
    Provider name: KmsKeyId
    Description: ID for the Amazon Web Services Key Management Service (KMS) key that Amazon Comprehend uses to encrypt the output results from an analysis job. The KmsKeyId can be one of the following formats:
    • KMS Key ID: “1234abcd-12ab-34cd-56ef-1234567890ab”
    • Amazon Resource Name (ARN) of a KMS Key: “arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab”
    • KMS Key Alias: “alias/ExampleAlias”
    • ARN of a KMS Key Alias: “arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias”
  • s3_uri
    Type: STRING
    Provider name: S3Uri
    Description: When you use the OutputDataConfig object while creating a custom classifier, you specify the Amazon S3 location where you want to write the confusion matrix and other output files. The URI must be in the same Region as the API endpoint that you are calling. The location is used as the prefix for the actual location of this output file. When the custom classifier job is finished, the service creates the output file in a directory specific to the job. The S3Uri field contains the location of the output file, called output.tar.gz. It is a compressed archive that contains the confusion matrix.

source_model_arn

Type: STRING
Provider name: SourceModelArn
Description: The Amazon Resource Name (ARN) of the source model. This model was imported from a different Amazon Web Services account to create the document classifier model in your Amazon Web Services account.

status

Type: STRING
Provider name: Status
Description: The status of the document classifier. If the status is TRAINED the classifier is ready to use. If the status is TRAINED_WITH_WARNINGS the classifier training succeeded, but you should review the warnings returned in the CreateDocumentClassifier response. If the status is FAILED you can see additional information about why the classifier wasn’t trained in the Message field.

submit_time

Type: TIMESTAMP
Provider name: SubmitTime
Description: The time that the document classifier was submitted for training.

tags

Type: UNORDERED_LIST_STRING

training_end_time

Type: TIMESTAMP
Provider name: TrainingEndTime
Description: The time that training of the document classifier was completed. Indicates the time when the training completes on documentation classifiers. You are billed for the time interval between this time and the value of TrainingStartTime.

training_start_time

Type: TIMESTAMP
Provider name: TrainingStartTime
Description: Indicates the time when the training starts on documentation classifiers. You are billed for the time interval between this time and the value of TrainingEndTime.

version_name

Type: STRING
Provider name: VersionName
Description: The version name that you assigned to the document classifier.

volume_kms_key_id

Type: STRING
Provider name: VolumeKmsKeyId
Description: ID for the Amazon Web Services Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: “1234abcd-12ab-34cd-56ef-1234567890ab”
  • Amazon Resource Name (ARN) of a KMS Key: “arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab”

vpc_config

Type: STRUCT
Provider name: VpcConfig
Description: Configuration parameters for a private Virtual Private Cloud (VPC) containing the resources you are using for your custom classifier. For more information, see Amazon VPC.

  • security_group_ids
    Type: UNORDERED_LIST_STRING
    Provider name: SecurityGroupIds
    Description: The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by “sg-”, for instance: “sg-03b388029b0a285ea”. For more information, see Security Groups for your VPC.
  • subnets
    Type: UNORDERED_LIST_STRING
    Provider name: Subnets
    Description: The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s Region. This ID number is preceded by “subnet-”, for instance: “subnet-04ccf456919e69055”. For more information, see VPCs and Subnets.
PREVIEWING: may/release-op-asl