Crea informes personalizados utilizando la API de Análisis de log

Información general

Utilice la API de Análisis de log para crear rápidamente informes y dashboards personalizados para tu equipo combinando información de tu empresa y otros servicios junto con datos de log.

En esta guía se tratan los siguientes ejemplos:

Requisitos previos

  • El uso de la API de Análisis de log requiere una clave de API y una clave de aplicación. El usuario que ha creado la clave de aplicación debe tener los permisos adecuados para acceder a los datos. Para utilizar los ejemplos siguientes, sustituye <DATADOG_API_KEY> y <DATADOG_APP_KEY> por tu clave de API de Datadog y tu clave de aplicación de Datadog, respectivamente.

  • Esta guía también asume que tienes un terminal con curl.

Ejemplos

Obtener recuentos

Con la siguiente llamada a la API, crea una table con count de eventos de log agrupados por el campo status y que muestra los 3 primeros elementos. El type debe ser total.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"count"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"status",
           "sort":{
               "order":"desc",
               "type": "measure",
               "aggregation":"count"
           },
           "limit":3
       }
   ]
}'

Respuesta:

El conjunto de datos resultante comprende el objeto buckets como se muestra en el siguiente ejemplo de respuesta. En este ejemplo, c0 representa el total de count.

{
    "meta": {
        "status": "done",
        "request_id": "MlNkM2lwdXpSMXExVndrWldqV2F0d3xYU1dqejF1Qm9QbU1STnF6RVQ4M3Jn",
        "page": {
            "after": "eyJhZnRlciI6eyJzdGF0dXMiOlsid2FybiIsIm5vdGljZSIsImluZm8iXX19"
        },
        "elapsed": 399
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 644291
                },
                "by": {
                    "status": "warn"
                }
            },
            {
                "computes": {
                    "c0": 223652
                },
                "by": {
                    "status": "notice"
                }
            },
            {
                "computes": {
                    "c0": 2886959
                },
                "by": {
                    "status": "info"
                }
            }
        ]
    }
}

Con la siguiente llamada a la API, crea una timeseries con count de eventos de log agrupados por el campo status cambiado cada 1m. El type debe ser timeseries.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"timeseries",
       "aggregation":"count",
       "interval":"1m"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"status",
           "sort":{
               "order":"desc",
               "type": "measure",
               "aggregation":"count"
           }
       }
   ]
}
'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "U1VfQTc4M19SWldjNkJFUkh2R2R1Z3w3Uk9lajlmQklnUnZyQnpCV0k1Tmtn",
        "elapsed": 152
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": [
                        {
                            "value": 1856,
                            "time": "2020-08-10T19:00:00.000Z"
                        },
                        {
                            "value": 1614,
                            "time": "2020-08-10T19:01:00.000Z"
                        }
                    ]
                },
                "by": {
                    "status": "info"
                }
            },
            {
                "computes": {
                    "c0": [
                        {
                            "value": 25,
                            "time": "2020-08-10T19:00:00.000Z"
                        },
                        {
                            "value": 24,
                            "time": "2020-08-10T19:01:00.000Z"
                        }
                    ]
                },
                "by": {
                    "status": "error"
                }
            }
        ]
    }
}

Obtener estadísticas

Con la siguiente llamada a la API, crea una table con avg de valores en una metric como @http.response_time agrupados por el campo status. El type debe ser total.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"avg",
       "metric":"@http.response_time"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"status",
           "sort":{
               "order":"desc",    
               "type": "measure",
               "aggregation":"avg",
               "metric":"@http.response_time"
           }
       }
   ]
}'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "ZHZlZ1Myek1UMjZDYXZ4am16bFFnUXxIa1BPa3ZwYi1iYW5vM0JzQWNEQ2NB",
        "elapsed": 429
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 2317.284155937053
                },
                "by": {
                    "status": "warn"
                }
            },
            {
                "computes": {
                    "c0": 119.5178351086976
                },
                "by": {
                    "status": "ok"
                }
            },
            {
                "computes": {
                    "c0": 54.850206927300384
                },
                "by": {
                    "status": "info"
                }
            }
        ]
    }
}

Del mismo modo, puedes crear una serie temporal avg configurando type como timeseries.

Con la siguiente llamada a la API, crea una table con sum de valores en una metric como @http.response_time agrupados por el campo service. El type debe ser total.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"sum",
       "metric":"@http.response_time"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"desc",    
               "type": "measure",
               "aggregation":"sum",
               "metric":"@http.response_time"
           }
       }
   ]
}'

Del mismo modo, crea una serie temporal sum estableciendo type como timeseries.

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "SDZMOEZDOW1RUHFaXzc5M1FWSmFTQXxaRHJxZnNuNFVnXzdYRkZ5cjJtMGRB",
        "elapsed": 412
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 30486.0
                },
                "by": {
                    "service": "abc"
                }
            },
            {
                "computes": {
                    "c0": 16113.0
                },
                "by": {
                    "service": "xyz"
                }
            }
        ]
    }
}

Con la siguiente llamada a la API, crea una table con min de valores en una metric como @http.response_time agrupados por el campo service. El type debe ser total.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"min",
       "metric":"@http.response_time"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"desc",    
               "type": "measure",
               "aggregation":"min",
               "metric":"@http.response_time"
           }
       }
   ]
}'

Del mismo modo, crea una serie temporal min estableciendo type como timeseries.

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "S1FPbUJVUWVSZk9vUFVQdEdNeGhyQXw2Sk9ZcHpiWkZHa0tVYll1LTUyOGZ3",
        "elapsed": 427
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 2440.0
                },
                "by": {
                    "service": "abc"
                }
            },
            {
                "computes": {
                    "c0": 294.0
                },
                "by": {
                    "service": "xyz"
                }
            }
        ]
    }
}

Con la siguiente llamada a la API, crea una table con max de valores en una metric como @http.response_time agrupados por el campo service. El type debe ser total.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"max",
       "metric":"@http.response_time"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"desc",    
               "type": "measure",
               "aggregation":"max",
               "metric":"@http.response_time"
           }
       }
   ]
}'

Del mismo modo, puedes crear una serie temporal max configurando type como timeseries.

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "eEtaMk1rVUlUU1NseWlTWnR5R1VDd3xIa1BPa3ZwYi1iYW5vM0JzQWNEQ2NB",
        "elapsed": 338
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 23456.0
                },
                "by": {
                    "service": "abc"
                }
            },
            {
                "computes": {
                    "c0": 8399.0
                },
                "by": {
                    "service": "xyz"
                }
            }
        ]
    }
}

Obtener percentiles

Con la siguiente llamada a la API, crea una table con percentiles de valores en una metric como @http.response_time agrupados por el campo service. El type debe ser total. Los diferentes valores de percentil disponibles son pc75, pc90, pc95, pc98 y pc99.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"pc99",
       "metric":"@http.response_time"
   }],
   "filter": {
       "from":"1597086000000",
       "to":"1597086120000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"desc",    
               "type": "measure",
               "aggregation":"pc99",
               "metric":"@http.response_time"
           }
       }
   ]
}'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "SWlGQVh2YkpRaTJvalprbUFDWmFCQXxIa1BPa3ZwYi1iYW5vM0JzQWNEQ2NB",
        "elapsed": 513
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 23078.68
                },
                "by": {
                    "service": "abc"
                }
            },
            {
                "computes": {
                    "c0": 8379.42
                },
                "by": {
                    "service": "xyz"
                }
            }
        ]
    }
}

Del mismo modo, crea una serie temporal percentile estableciendo type como timeseries.

Múltiples grupos, recuentos únicos y métricas

Con la siguiente llamada a la API, crea una table para mostrar el desglose de tus datos de log por facets como OS y Browser y calcular diferentes métricas como el recuento único de useragent, pc90 de duration de métrica, avg de métrica network.bytes_written , y el count total de eventos de log.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"cardinality",
       "metric":"@http.useragent"
   },
   {
       "type":"total",
       "aggregation":"pc90",
       "metric":"@duration"
   },
   {
       "type":"total",
       "aggregation":"avg",
       "metric":"@network.bytes_written"
   },
   {
       "type":"total",
       "aggregation":"count"
   }
   ],
   "filter": {
       "from":"1597428000000",
       "to":"1597428180000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"@http.useragent_details.os.family",
           "limit":2,
           "sort":{
               "order":"desc",
               "type":"measure",
               "aggregation":"cardinality",
               "metric":"@http.useragent"
           }
       },
       {
           "type":"facet",
           "facet":"@http.useragent_details.browser.family",
           "limit":2,
           "sort":{
               "order":"desc",
               "type":"measure",
               "aggregation":"cardinality",
               "metric":"@http.useragent"
           }
       }
   ]
}
'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "dkt3bGhON0lSOEdCVWFqa3pyUEtNUXxzU0p5RG1qN3MwNk45aExrazFGTTR3",
        "elapsed": 1299
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c3": 534310,
                    "c2": 29855.686900195342,
                    "c1": 289880482.9557167,
                    "c0": 430
                },
                "by": {
                    "@http.useragent_details.browser.family": "Chrome",
                    "@http.useragent_details.os.family": "Mac OS X"
                }
            },
            {
                "computes": {
                    "c3": 47973,
                    "c2": 25117.50770936209,
                    "c1": 270379443.2579185,
                    "c0": 64
                },
                "by": {
                    "@http.useragent_details.browser.family": "Firefox",
                    "@http.useragent_details.os.family": "Mac OS X"
                }
            },
            {
                "computes": {
                    "c3": 901506,
                    "c2": 9170.975124352715,
                    "c1": 235075236.08510733,
                    "c0": 342
                },
                "by": {
                    "@http.useragent_details.browser.family": "Other",
                    "@http.useragent_details.os.family": "Other"
                }
            },
            {
                "computes": {
                    "c3": 2734,
                    "c2": 953181.3177150192,
                    "c1": 200800000.00000006,
                    "c0": 45
                },
                "by": {
                    "@http.useragent_details.browser.family": "Apache-HttpClient",
                    "@http.useragent_details.os.family": "Other"
                }
            }
        ]
    }
}

En la respuesta, c0 representa el recuento único de useragent, c1 representa el pc90 de duration de métrica, c2 representa el avg de métrica network.bytes_written, y c3 representa el count total de eventos de log.

Paginación

La siguiente llamada a la API crea una table para mostrar el desglose de tus datos de log por facetas (como service y status), ordena los resultados por service en orden ascendente, y pagina sobre el conjunto de resultados utilizando limit.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"count"
   }],
   "filter": {
       "from":"1611118800000",
       "to":"1611205140000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"asc"
           },
           "limit":2
       },
       {
           "type":"facet",
           "facet":"status",
           "sort":{
               "order":"desc",
               "type":"measure",
               "aggregation":"count"
           }
       }
   ]
}'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "MjZUNF9qRG1TaG1Tb01JenhBV2tYd3x3VTNjTUhIQUdaRUZKajQ0YTBqdmZn",
        "page": {
            "after": "eyJhZnRlciI6eyJzZXJ2aWNlIjpbImFjdGl2YXRvciIsImFkLWF1Y3Rpb24iXX19"
        },
        "elapsed": 5923
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 312
                },
                "by": {
                    "status": "info",
                    "service": "activator"
                }
            },
            {
                "computes": {
                    "c0": 405606
                },
                "by": {
                    "status": "info",
                    "service": "ad-auction"
                }
            },
            {
                "computes": {
                    "c0": 124
                },
                "by": {
                    "status": "error",
                    "service": "ad-auction"
                }
            }
        ]
    }
}

Para paginar y acceder al siguiente conjunto de resultados, utiliza la opción page y establece el valor cursor en el valor after de la llamada anterior.

Llamada a la API:

curl -L -X POST "https://api.datadoghq.com/api/v2/logs/analytics/aggregate" -H "Content-Type: application/json" -H "DD-API-KEY: <DATADOG_API_KEY>" -H "DD-APPLICATION-KEY: <DATADOG_APP_KEY>" --data-raw '{
   "compute":[
   {
       "type":"total",
       "aggregation":"count"
   }],
   "filter": {
       "from":"1611118800000",
       "to":"1611205140000",
       "query":"*"
           },
   "group_by":[
       {
           "type":"facet",
           "facet":"service",
           "sort":{
               "order":"asc"
           },
           "limit":2
       },
       {
           "type":"facet",
           "facet":"status",
           "sort":{
               "order":"desc",
               "type":"measure",
               "aggregation":"count"
           }
       }
   ],
   "page":{
       "cursor":"eyJhZnRlciI6eyJzZXJ2aWNlIjpbImFjdGl2YXRvciIsImFkLWF1Y3Rpb24iXX19"
   }
}'

Respuesta:

{
    "meta": {
        "status": "done",
        "request_id": "aVM2Y2VVMUZReVNmLVU4ZzUwV1JnUXxRWkVjamNHZU9Ka21ubjNDbHVYbXJn",
        "page": {
            "after": "eyJhZnRlciI6eyJzZXJ2aWNlIjpbImFjdGl2YXRvciIsImFkLWF1Y3Rpb24iLCJhZC1zZXJ2ZXIiLCJhZGRvbi1yZXNpemVyIl19fQ"
        },
        "elapsed": 6645
    },
    "data": {
        "buckets": [
            {
                "computes": {
                    "c0": 24740759
                },
                "by": {
                    "status": "info",
                    "service": "ad-server"
                }
            },
            {
                "computes": {
                    "c0": 2854331
                },
                "by": {
                    "status": "error",
                    "service": "ad-server"
                }
            },
            {
                "computes": {
                    "c0": 139
                },
                "by": {
                    "status": "error",
                    "service": "addon-resizer"
                }
            }
        ]
    }
}

Nota: La paginación solo es posible si sort es alphabetical para al menos una faceta, como se muestra en el ejemplo anterior. Para crear un informe con varios grupos con facetas de cardinalidad alta, realiza llamadas a la API por separado. Por ejemplo, para crear un informe que muestre diferentes métricas para url paths por cada session id, realiza llamadas a la API por separado. La primera llamada devolvería todos los sessions ids ordenados y utilizarías estos resultados para obtener las métricas para url paths para cada session id.

Leer más

PREVIEWING: mervebolat/span-id-preprocessing