RC4 encryption is now insecure

이 페이지는 아직 한국어로 제공되지 않으며 번역 작업 중입니다. 번역에 관한 질문이나 의견이 있으시면 언제든지 저희에게 연락해 주십시오.

Metadata

ID: go-security/import-rc4

Language: Go

Severity: Warning

Category: Security

Description

In Go, it is strongly discouraged to use the crypto/rc4 package for cryptographic operations involving the RC4 (Rivest Cipher 4) algorithm. Avoid the crypto/rc4 package for the following reasons:

  1. Weak Security: The RC4 algorithm is considered weak and insecure for modern cryptographic applications. It is susceptible to significant vulnerabilities, making it unsuitable for ensuring data confidentiality. Several attacks, such as the Fluhrer-Mantin-Shamir attack and biases in the keystream, have been discovered over the years. Due to these vulnerabilities, the RC4 algorithm is no longer considered secure.
  2. Cryptographic Strength: RC4 has a small key size of up to 256 bits (variable length), which is relatively short compared to modern symmetric encryption algorithms like AES (Advanced Encryption Standard). A shorter key size reduces the complexity of brute-force attacks and increases the likelihood of successful attacks on the encryption.
  3. Lack of Compatibility: The crypto/rc4 package in Go does not provide compatibility with more advanced modes of operation or options for authenticated encryption. Modern cryptographic systems often require these features to ensure data integrity and protect against known vulnerabilities.

Instead of using RC4, it is recommended to use stronger and more secure algorithms like AES (Advanced Encryption Standard). The Go standard library offers the crypto/aes package to implement AES encryption, which provides significant security improvements and better support for advanced cryptographic features. |

To ensure secure and reliable cryptographic operations, it is essential to avoid using the crypto/rc4 package and opt for stronger algorithms like AES. AES provides enhanced security, compatibility with modern cryptographic practices, and support for larger key sizes. By adopting modern and secure algorithms, you can protect data confidentiality effectively.

Always stay updated with the latest best practices and security recommendations to ensure the integrity and security of your cryptographic operations. Choosing strong encryption algorithms is crucial for safeguarding sensitive data in your Go applications.

Non-Compliant Code Examples

package main

import (
	"crypto/rc4"
)

func main() {
	_, err := rc4.NewCipher([]byte("mySample"))
	if err != nil {
		panic(err)
	}
}
https://static.datadoghq.com/static/images/logos/github_avatar.svg https://static.datadoghq.com/static/images/logos/vscode_avatar.svg jetbrains

Seamless integrations. Try Datadog Code Analysis

PREVIEWING: rtrieu/product-analytics-ui-changes