이 페이지는 아직 한국어로 제공되지 않으며 번역 작업 중입니다. 번역에 관한 질문이나 의견이 있으시면 언제든지 저희에게 연락해 주십시오.

Overview

Configure your Datadog Agent so that the Observability Pipelines Worker formats the logs collected into a Datadog-rehydratable format before routing them to Datadog Log Archives.

The log sources, processors, and destinations available for this use case

This document walks you through the following steps:

  1. The prerequisites needed to set up Observability Pipelines
  2. Configuring a Log Archive
  3. Setting up Observability Pipelines
  4. Connecting the Datadog Agent to the Observability Pipelines Worker

Prerequisites

You already have the Datadog Agent installed to collect and route your logs to Datadog Log Management. If you do not have Datadog Agents set up, see the Datadog Agent documentation for more information.

You have the following information available:

  • The Datadog Agent address, including the port.
    • The Observability Pipelines Worker listens to this socket address to receive logs from the Datadog Agent.
  • A Datadog API key with Remote Configuration enabled.
  • Your Datadog Site URL. For example, datadoghq.com for the site US1.

Configure Log Archives

If you already have a Datadog Log Archive configured for Observability Pipelines, skip to Set up Observability Pipelines.

You need to have the Datadog integration for your cloud provider installed to set up Datadog Log Archive. See AWS integration, Google Cloud Platform, and Azure integration documentation for more information.

Select the cloud provider you are using to archive your logs.

Create an Amazon S3 bucket

  1. Navigate to Amazon S3 buckets.
  2. Click Create bucket.
  3. Enter a descriptive name for your bucket.
  4. Do not make your bucket publicly readable.
  5. Optionally, add tags.
  6. Click Create bucket.

Set up an IAM policy that allows Workers to write to the S3 bucket

  1. Navigate to the IAM console.
  2. Select Policies in the left side menu.
  3. Click Create policy.
  4. Click JSON in the Specify permissions section.
  5. Copy the below policy and paste it into the Policy editor. Replace <MY_BUCKET_NAME> and <MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1> with the information for the S3 bucket you created earlier.
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "DatadogUploadAndRehydrateLogArchives",
                "Effect": "Allow",
                "Action": ["s3:PutObject", "s3:GetObject"],
                "Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
            },
            {
                "Sid": "DatadogRehydrateLogArchivesListBucket",
                "Effect": "Allow",
                "Action": "s3:ListBucket",
                "Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
            }
        ]
    }
    
  6. Click Next.
  7. Enter a descriptive policy name.
  8. Optionally, add tags.
  9. Click Create policy.

Create an IAM user

Create an IAM user and attach the IAM policy you created earlier to it.

  1. Navigate to the IAM console.
  2. Select Users in the left side menu.
  3. Click Create user.
  4. Enter a username.
  5. Click Next.
  6. Select Attach policies directly.
  7. Choose the IAM policy you created earlier to attach to the new IAM user.
  8. Click Next.
  9. Optionally, add tags.
  10. Click Create user.

Create access credentials for the new IAM user. The AWS access key and AWS secret access key are added as environment variables in the Install the Observability Pipelines Worker step.

Create a service account

Create a service account to use the policy you created above.

Create an IAM user

Create an IAM user and attach the IAM policy you created earlier to it.

  1. Navigate to the IAM console.
  2. Select Users in the left side menu.
  3. Click Create user.
  4. Enter a username.
  5. Click Next.
  6. Select Attach policies directly.
  7. Choose the IAM policy you created earlier to attach to the new IAM user.
  8. Click Next.
  9. Optionally, add tags.
  10. Click Create user.

Create access credentials for the new IAM user. The AWS access key and AWS secret access key are added later as environment variables when you install the Observability Pipelines Worker.

Create an IAM user

Create an IAM user and attach the IAM policy you created earlier to it.

  1. Navigate to the IAM console.
  2. Select Users in the left side menu.
  3. Click Create user.
  4. Enter a username.
  5. Click Next.
  6. Select Attach policies directly.
  7. Choose the IAM policy you created earlier to attach to the new IAM user.
  8. Click Next.
  9. Optionally, add tags.
  10. Click Create user.

Create access credentials for the new IAM user. The AWS access key and AWS secret access key are added as environment variables in the Install the Observability Pipelines Worker step.

Connect the S3 bucket to Datadog Log Archives

  1. Navigate to Datadog Log Forwarding.
  2. Click New archive.
  3. Enter a descriptive archive name.
  4. Add a query that filters out all logs going through log pipelines so that none of those logs go into this archive. For example, add the query observability_pipelines_read_only_archive, assuming no logs going through the pipeline have that tag added.
  5. Select AWS S3.
  6. Select the AWS account that your bucket is in.
  7. Enter the name of the S3 bucket.
  8. Optionally, enter a path.
  9. Check the confirmation statement.
  10. Optionally, add tags and define the maximum scan size for rehydration. See Advanced settings for more information.
  11. Click Save.

See the Log Archives documentation for additional information.

Create a storage bucket

  1. Navigate to Google Cloud Storage.
  2. On the Buckets page, click Create to create a bucket for your archives..
  3. Enter a name for the bucket and choose where to store your data.
  4. Select Fine-grained in the Choose how to control access to objects section.
  5. Do not add a retention policy because the most recent data needs to be rewritten in some rare cases (typically a timeout case).
  6. Click Create.

Allow the Observability Pipeline Worker to write to the bucket

To authenticate the Observability Pipelines Worker for Google Cloud Storage, contact your Google Security Operations representative for a Google Developer Service Account Credential. This credential is a JSON file and must be placed under DD_OP_DATA_DIR/config. See Getting API authentication credential for more information.

Connect the storage bucket to Datadog Log Archives

  1. Navigate to Datadog Log Forwarding.
  2. Click New archive.
  3. Enter a descriptive archive name.
  4. Add a query that filters out all logs going through log pipelines so that none of those logs go into this archive. For example, add the query observability_pipelines_read_only_archive, assuming no logs going through the pipeline have that tag added.
  5. Select Google Cloud Storage.
  6. Select the service account your storage bucket is in.
  7. Select the project.
  8. Enter the name of the storage bucket you created earlier.
  9. Optionally, enter a path.
  10. Optionally, set permissions, add tags, and define the maximum scan size for rehydration. See Advanced settings for more information.
  11. Click Save.

See the Log Archives documentation for additional information.

Create a storage account

Create an Azure storage account if you don’t already have one.

  1. Navigate to Storage accounts.
  2. Click Create.
  3. Select the subscription name and resource name you want to use.
  4. Enter a name for your storage account.
  5. Select a region in the dropdown menu.
  6. Select Standard performance or Premium account type.
  7. Click Next.
  8. In the Blob storage section, select Hot or Cool storage.
  9. Click Review + create.

Create a storage bucket

  1. In your storage account, click Containers under Data storage in the left navigation menu.
  2. Click + Container at the top to create a new container.
  3. Enter a name for the new container. This name is used later when you set up the Observability Pipelines Azure Storage destination.

Note: Do not set immutability policies because the most recent data might need to be rewritten in rare cases (typically when there is a timeout).

Connect the Azure container to Datadog Log Archives

  1. Navigate to Datadog Log Forwarding.
  2. Click New archive.
  3. Enter a descriptive archive name.
  4. Add a query that filters out all logs going through log pipelines so that none of those logs go into this archive. For example, add the query observability_pipelines_read_only_archive, assuming no logs going through the pipeline have that tag added.
  5. Select Azure Storage.
  6. Select the Azure tenant and client your storage account is in.
  7. Enter the name of the storage account.
  8. Enter the name of the container you created earlier.
  9. Optionally, enter a path.
  10. Optionally, set permissions, add tags, and define the maximum scan size for rehydration. See Advanced settings for more information.
  11. Click Save.

See the Log Archives documentation for additional information.

Set up Observability Pipelines

  1. Navigate to Observability Pipelines.
  2. Select the Archive Logs template to create a new pipeline.
  3. Select Datadog Agent as the source.

Set up the source

이 단계에서는 설정할 수 있는 항목이 없습니다.

Set up the destinations

Enter the following information based on your selected logs destination.

If the Worker is ingesting logs that are not coming from the Datadog Agent and are shipped to an archive using the Observability Pipelines Datadog Archives destination, those logs are not tagged with reserved attributes. In addition, logs rehydrated into Datadog will not have standard attributes mapped. This means that when you rehydrate your logs into Log Management, you may lose Datadog telemetry, the ability to search logs easily, and the benefits of unified service tagging if you do not structure and remap your logs in Observability Pipelines before routing your logs to an archive.

For example, say your syslogs are sent to Datadog Archives and those logs have the status tagged as severity instead of the reserved attribute of status and the host tagged as host-name instead of the reserved attribute hostname. When these logs are rehydrated in Datadog, the status for each log is set to info and none of the logs have a hostname tag.

Follow the instructions for the cloud provider you are using to archive your logs.

  1. Enter the S3 bucket name for the S3 bucket you created earlier.
  2. Enter the AWS region the S3 bucket is in.
  3. Enter the key prefix. Prefixes are useful for partitioning objects. For example, you can use a prefix as an object key to store objects under a particular directory. If using a prefix for this purpose, it must end in / to act as a directory path; a trailing / is not automatically added.
  4. Select the storage class for your S3 bucket in the Storage Class dropdown menu.

Your AWS access key ID and AWS secret access key are set as environment variables when you install the Worker later.

  1. Enter the name of the Google Cloud storage bucket you created earlier.
  2. Enter the path to the credentials JSON file you downloaded earlier.
  3. Select the storage class for the created objects.
  4. Select the access level of the created objects.
  5. Optionally, enter in the prefix. Prefixes are useful for partitioning objects. For example, you can use a prefix as an object key to store objects under a particular directory. If using a prefix for this purpose, it must end in / to act as a directory path; a trailing / is not automatically added.
  6. Optionally, click Add Header to add metadata.
  1. Enter the name of the Azure container you created earlier.
  2. Optionally, enter a prefix. Prefixes are useful for partitioning objects. For example, you can use a prefix as an object key to store objects under a particular directory. If using a prefix for this purpose, it must end in / to act as a directory path; a trailing / is not automatically added.

Datadog 목적지에 대한 설정 단계가 없습니다.

  • Splunk HEC 주소:
    • 관측 가능성 파이프라인 Worker가 로그를 수신하기 위해 수신 대기하는 바인딩 주소는 원래 Splunk 인덱서용입니다. 예: 0.0.0.0:8088 참고: /services/collector/event는 엔드포인트에 자동으로 추가됩니다.
    • 환경 변수 DD_OP_SOURCE_SPLUNK_HEC_ADDRESS에 저장됩니다.

다음 필드는 선택 항목입니다.

  1. 인코딩 드롭다운 메뉴에서 파이프라인의 출력을 JSON, Logfmt, 또는 Raw 텍스트로 인코딩할지 선택합니다. 디코딩을 선택하지 않으면 디코딩은 기본적으로 JSON으로 설정됩니다.
  2. 소스 이름을 입력하여 Sumo Logic 컬렉터(Collector) 소스에 대해 구성된 기본값 name 을 재정의합니다.
  3. 호스트 이름을 입력하면 기본값인 host 값을 재정의하여 Sumo Logic 컬렉터(Collector) 소스에 대한 기본값을 재정의할 수 있습니다.
  4. 카테고리 이름을 입력하여 Sumo Logic 컬렉터(Collector) 소스에 대해 구성된 기본값 category을 재정의합니다.
  5. 커스텀 헤더 필드와 값을 추가하려면 헤더 추가를 클릭합니다.
The rsyslog and syslog-ng destinations support the RFC5424 format.

The rsyslog and syslog-ng destinations match these log fields to the following Syslog fields:

Log EventSYSLOG FIELDDefault
log[“message”]MESSAGENIL
log[“procid”]PROCIDThe running Worker’s process ID.
log[“appname”]APP-NAMEobservability_pipelines
log[“facility”]FACILITY8 (log_user)
log[“msgid”]MSGIDNIL
log[“severity”]SEVERITYinfo
log[“host”]HOSTNAMENIL
log[“timestamp”]TIMESTAMPCurrent UTC time.

The following destination settings are optional:

  1. Toggle the switch to enable TLS. If you enable TLS, the following certificate and key files are required:
    • Server Certificate Path: The path to the certificate file that has been signed by your Certificate Authority (CA) Root File in DER or PEM (X.509).
    • CA Certificate Path: The path to the certificate file that is your Certificate Authority (CA) Root File in DER or PEM (X.509).
    • Private Key Path: The path to the .key private key file that belongs to your Server Certificate Path in DER or PEM (PKCS#8) format.
  2. Enter the number of seconds to wait before sending TCP keepalive probes on an idle connection.

To authenticate the Observability Pipelines Worker for Google Chronicle, contact your Google Security Operations representative for a Google Developer Service Account Credential. This credential is a JSON file and must be placed under DD_OP_DATA_DIR/config. See Getting API authentication credential for more information.

To set up the Worker’s Google Chronicle destination:

  1. Enter the customer ID for your Google Chronicle instance.
  2. Enter the path to the credentials JSON file you downloaded earlier.
  3. Select JSON or Raw encoding in the dropdown menu.
  4. Select the appropriate Log Type in the dropdown menu.

Note: Logs sent to the Google Chronicle destination must have ingestion labels. For example, if the logs are from a A10 load balancer, it must have the ingestion label A10_LOAD_BALANCER. See Google Cloud’s Support log types with a default parser for a list of available log types and their respective ingestion labels.

The following fields are optional:

  1. Enter the name for the Elasticsearch index.
  2. Enter the Elasticsearch version.

Optionally, enter the name of the OpenSearch index.

  1. Optionally, enter the name of the Amazon OpenSearch index.
  2. Select an authentication strategy, Basic or AWS. For AWS, enter the AWS region.

Select the data center region (US or EU) of your New Relic account.

Set up processors

There are pre-selected processors added to your processor group out of the box. You can add additional processors or delete any existing ones based on your processing needs.

Processor groups are executed from top to bottom. The order of the processors is important because logs are checked by each processor, but only logs that match the processor’s filters are processed. To modify the order of the processors, use the drag handle on the top left corner of the processor you want to move.

Filter query syntax

Each processor has a corresponding filter query in their fields. Processors only process logs that match their filter query. And for all processors except the filter processor, logs that do not match the query are sent to the next step of the pipeline. For the filter processor, logs that do not match the query are dropped.

For any attribute, tag, or key:value pair that is not a reserved attribute, your query must start with @. Conversely, to filter reserved attributes, you do not need to append @ in front of your filter query.

For example, to filter out and drop status:info logs, your filter can be set as NOT (status:info). To filter out and drop system-status:info, your filter must be set as NOT (@system-status:info).

Filter query examples:

  • NOT (status:debug): This filters for only logs that do not have the status DEBUG.
  • status:ok service:flask-web-app: This filters for all logs with the status OK from your flask-web-app service.
    • This query can also be written as: status:ok AND service:flask-web-app.
  • host:COMP-A9JNGYK OR host:COMP-J58KAS: This filter query only matches logs from the labeled hosts.
  • @user.status:inactive: This filters for logs with the status inactive nested under the user attribute.

Learn more about writing filter queries in Datadog’s Log Search Syntax.

Add processors

Enter the information for the processors you want to use. Click the Add button to add additional processors. To delete a processor, click the kebab on the right side of the processor and select Delete.

The log processors available

이 프로세서는 지정된 필터 쿼리와 일치하는 로그를 필터링하고 일치하지 않는 모든 로그를 제외합니다 이 프로세스에서 로그가 제외되면, 아래 나와 있는 프로세서가 모두 해당 로그를 수신하지 않습니다. 이 프로세서는 디버그 또는 경고 로그와 같은 불필요한 로그를 필터링할 수 있습니다.

필터 프로세서를 설정하려면 다음과 같이 하세요.

  • 필터 쿼리를 정의합니다. 필터를 지정한 쿼리은 필터와 일치하는 로그만 전달하고 다른 모든 로그는 제외합니다.

The remap processor can add, drop, or rename fields within your individual log data. Use this processor to enrich your logs with additional context, remove low-value fields to reduce volume, and standardize naming across important attributes. Select add field, drop field, or rename field in the dropdown menu to get started.

Add field

Use add field to append a new key-value field to your log.

To set up the add field processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.
  2. Enter the field and value you want to add. To specify a nested field for your key, use the path notation: <OUTER_FIELD>.<INNER_FIELD>. All values are stored as strings. Note: If the field you want to add already exists, the Worker throws an error and the existing field remains unchanged.
Drop field

Use drop field to drop a field from logging data that matches the filter you specify below. It can delete objects, so you can use the processor to drop nested keys.

To set up the drop field processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.
  2. Enter the key of the field you want to drop. To specify a nested field for your specified key, use the path notation: <OUTER_FIELD>.<INNER_FIELD>. Note: If your specified key does not exist, your log will be unimpacted.
Rename field

Use rename field to rename a field within your log.

To set up the rename field processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.
  2. Enter the name of the field you want to rename in the Source field. To specify a nested field for your key, use the path notation: <OUTER_FIELD>.<INNER_FIELD>. Once renamed, your original field is deleted unless you enable the Preserve source tag checkbox described below.
    Note: If the source key you specify doesn’t exist, a default null value is applied to your target.
  3. In the Target field, enter the name you want the source field to be renamed to. To specify a nested field for your specified key, use the path notation: <OUTER_FIELD>.<INNER_FIELD>.
    Note: If the target field you specify already exists, the Worker throws an error and does not overwrite the existing target field.
  4. Optionally, check the Preserve source tag box if you want to retain the original source field and duplicate the information from your source key to your specified target key. If this box is not checked, the source key is dropped after it is renamed.
Path notation example

For the following message structure, use outer_key.inner_key.double_inner_key to refer to the key with the value double_inner_value.

{
    "outer_key": {
        "inner_key": "inner_value",
            "a": {
                    "double_inner_key": "double_inner_value",
                    "b": "b value"
                },
            "c": "c value"
        },
        "d": "d value"
    }

This processor samples your logging traffic for a representative subset at the rate that you define, dropping the remaining logs. As an example, you can use this processor to sample 20% of logs from a noisy non-critical service.

The sampling only applies to logs that match your filter query and does not impact other logs. If a log is dropped at this processor, none of the processors below receives that log.

To set up the sample processor:

  1. Define a filter query. Only logs that match the specified filter query are sampled at the specified retention rate below. The sampled logs and the logs that do not match the filter query are sent to the next step in the pipeline.
  2. Set the retain field with your desired sampling rate expressed as a percentage. For example, entering 2 means 2% of logs are retained out of all the logs that match the filter query.

This processor parses logs using the grok parsing rules that are available for a set of sources. The rules are automatically applied to logs based on the log source. Therefore, logs must have a source field with the source name. If this field is not added when the log is sent to the Observability Pipelines Worker, you can use the Add field processor to add it.

If the source field of a log matches one of the grok parsing rule sets, the log’s message field is checked against those rules. If a rule matches, the resulting parsed data is added in the message field as a JSON object, overwriting the original message.

If there isn’t a source field on the log, or no rule matches the log message, then no changes are made to the log and it is sent to the next step in the pipeline.

To set up the grok parser, define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they match the filter query, are sent to the next step in the pipeline.

To test log samples for out-of-the-box rules:

  1. Click the Preview Library Rules button.
  2. Search or select a source in the dropdown menu.
  3. Enter a log sample to test the parsing rules for that source.

To add a custom parsing rule:

  1. Click Add Custom Rule.
  2. If you want to clone a library rule, select Clone library rule and then the library source from the dropdown menu.
  3. If you want to create a custom rule, select Custom and then enter the source. The parsing rules are applied to logs with that source.
  4. Enter log samples to test the parsing rules.
  5. Enter the rules for parsing the logs. See Parsing for more information on writing parsing rules.
    Note: The url, useragent, and csv filters are not available.
  6. Click Advanced Settings if you want to add helper rules. See Using helper rules to factorize multiple parsing rules for more information.
  7. Click Add Rule.

The quota processor measures the logging traffic for logs that match the filter you specify. When the configured daily quota is met inside the 24-hour rolling window, the processor can either drop additional logs or send an alert using a Datadog monitor. You can configure the processor to track the total volume or the total number of events. The pipeline uses the name of the quota to identify the quota across multiple Remote Configuration deployments of the Worker.

As an example, you can configure this processor to drop new logs or trigger an alert without dropping logs after the processor has received 10 million events from a certain service in the last 24 hours.

To set up the quota processor:

  1. Enter a name for the quota processor.
  2. Define a filter query. Only logs that match the specified filter query are counted towards the daily limit.
    • Logs that match the quota filter and are within the daily quota are sent to the next step in the pipeline.
    • Logs that do not match the quota filter are sent to the next step of the pipeline.
  3. In the Unit for quota dropdown menu, select if you want to measure the quota by the number of Events or by the Volume in bytes.
  4. Set the daily quota limit and select the unit of magnitude for your desired quota.
  5. Check the Drop events checkbox if you want to drop all events when your quota is met. Leave it unchecked if you plan to set up a monitor that sends an alert when the quota is met.
    • If logs that match the quota filter are received after the daily quota has been met and the Drop events option is selected, then those logs are dropped. In this case, only logs that did not match the filter query are sent to the next step in the pipeline.
    • If logs that match the quota filter are received after the daily quota has been met and the Drop events option is not selected, then those logs and the logs that did not match the filter query are sent to the next step in the pipeline.
  6. Optional: Click Add Field if you want to set a quota on a specific service or region field.
    a. Enter the field name you want to partition by. See the Partition example for more information.
    i. Select the Ignore when missing if you want the quota applied only to events that match the partition. See the Ignore when missing example for more information.
    ii. Optional: Click Overrides if you want to set different quotas for the partitioned field.
    - Click Download as CSV for an example of how to structure the CSV.
    - Drag and drop your overrides CSV to upload it. You can also click Browse to select the file to upload it. See the Overrides example for more information.
    b. Click Add Field if you want to add another partition.

Examples

Partition example

Use Partition by if you want to set a quota on a specific service or region. For example, if you want to set a quota for 10 events per day and group the events by the service field, enter service into the Partition by field.

Example for the “ignore when missing” option

Select Ignore when missing if you want the quota applied only to events that match the partition. For example, if the Worker receives the following set of events:

{"service":"a", "source":"foo", "message": "..."}
{"service":"b", "source":"bar", "message": "..."}
{"service":"b", "message": "..."}
{"source":"redis", "message": "..."}
{"message": "..."}

And the Ignore when missing is selected, then the Worker:

  • creates a set for logs with service:a and source:foo
  • creates a set for logs with service:b and source:bar
  • ignores the last three events

The quota is applied to the two sets of logs and not to the last three events.

If the Ignore when missing is not selected, the quota is applied to all five events.

Overrides example

If you are partitioning by service and have two services: a and b, you can use overrides to apply different quotas for them. For example, if you want service:a to have a quota limit of 5,000 bytes and service:b to have a limit of 50 events, the override rules look like this:

ServiceTypeLimit
aBytes5,000
bEvents50

The reduce processor groups multiple log events into a single log, based on the fields specified and the merge strategies selected. Logs are grouped at 10-second intervals. After the interval has elapsed for the group, the reduced log for that group is sent to the next step in the pipeline.

To set up the reduce processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. Reduced logs and logs that do not match the filter query are sent to the next step in the pipeline.
  2. In the Group By section, enter the field you want to group the logs by.
  3. Click Add Group by Field to add additional fields.
  4. In the Merge Strategy section:
    • In On Field, enter the name of the field you want to merge the logs on.
    • Select the merge strategy in the Apply dropdown menu. This is the strategy used to combine events. See the following Merge strategies section for descriptions of the available strategies.
    • Click Add Merge Strategy to add additional strategies.
Merge strategies

These are the available merge strategies for combining log events.

NameDescription
ArrayAppends each value to an array.
ConcatConcatenates each string value, delimited with a space.
Concat newlineConcatenates each string value, delimited with a newline.
Concat rawConcatenates each string value, without a delimiter.
DiscardDiscards all values except the first value that was received.
Flat uniqueCreates a flattened array of all unique values that were received.
Longest arrayKeeps the longest array that was received.
MaxKeeps the maximum numeric value that was received.
MinKeeps the minimum numeric value that was received.
RetainDiscards all values except the last value that was received. Works as a way to coalesce by not retaining `null`.
Shortest arrayKeeps the shortest array that was received.
SumSums all numeric values that were received.

The deduplicate processor removes copies of data to reduce volume and noise. It caches 5,000 messages at a time and compares your incoming logs traffic against the cached messages. For example, this processor can be used to keep only unique warning logs in the case where multiple identical warning logs are sent in succession.

To set up the deduplicate processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. Deduped logs and logs that do not match the filter query are sent to the next step in the pipeline.
  2. In the Type of deduplication dropdown menu, select whether you want to Match on or Ignore the fields specified below.
    • If Match is selected, then after a log passes through, future logs that have the same values for all of the fields you specify below are removed.
    • If Ignore is selected, then after a log passes through, future logs that have the same values for all of their fields, except the ones you specify below, are removed.
  3. Enter the fields you want to match on, or ignore. At least one field is required, and you can specify a maximum of three fields.
    • Use the path notation <OUTER_FIELD>.<INNER_FIELD> to match subfields. See the Path notation example below.
  4. Click Add field to add additional fields you want to filter on.
Path notation example

For the following message structure, use outer_key.inner_key.double_inner_key to refer to the key with the value double_inner_value.

{
    "outer_key": {
        "inner_key": "inner_value",
            "a": {
                    "double_inner_key": "double_inner_value",
                    "b": "b value"
                },
            "c": "c value"
        },
        "d": "d value"
    }

민감 데이터 프로세서는 로그를 스캔해 PII, PCI, 커스텀 민감 데이터와 같은 민감 정보를 감지, 수정, 또는 해시합니다. 사전 정의된 규칙 라이브러리에서 고르거나 커스텀 Regex 규칙을 입력해 민감 데이터를 스캔할 수 있습니다.

민감 데이터 스캐너 프로세서를 설정하려면 다음을 따르세요.

  1. 필터 쿼리를 정의합니다. 특정 필터 쿼리와 일치하는 로그만 스캔 및 처리됩니다. 필터 쿼리와 일치하는지 여부와 관계 없이 모든 로그는 파이프라인 다음 단계로 전송됩니다.
  2. Add Scanning Rule을 클릭합니다.
  3. 스캐닝 규칙 이름을 지정합니다.
  4. Select scanning rule type 필드에서 라이브러리에서 규칙을 생성할지, 혹은 커스텀 규칙을 생성할지 선택합니다.
    • 라이브러리에서 규칙을 생성할 경우 사용하고 싶은 라이브러리 패턴을 선택합니다.
    • 커스텀 규칙을 생성할 경우 데이터에 대비해 확인할 regex 패턴을 입력합니다.
  5. Scan entire part of event 섹션의 드롭다운에서 Entire Event, *Specific Attributes, 또는 Exclude Attributes 중 스캔하고자 하는 방법을 선택합니다.
    • Specific Attributes를 선택하면 Add Field를 클릭하고 스캔하고자 하는 특정 속성을 입력합니다. 최대 3개 필드까지 추가할 수 있습니다. 경로 표기법(outer_key.inner_key)을 사용해 중첩된 키에 접근할 수 있습니다. 중첩된 데이터로 지정된 속성의 경우 모든 중첩된 데이터가 스캔됩니다.
    • Exclude Attributes를 선택하면 Add Field를 클릭하고 스캔에서 제외하고자 하는 특정 속성을 입력합니다. 최대 3개 필드까지 추가할 수 있습니다. 경로 표기법(outer_key.inner_key)을 사용해 중첩된 키에 접근할 수 있습니다. 중첩된 데이터로 지정된 속성의 경우, 모든 중첩된 데이터가 예외가 됩니다.
  6. Define action on match 섹션에서 일치하는 정보에 실행하려는 작업을 선택합니다. 삭제, 부분 삭제, 해싱은 모두 되돌릴 수 없는 작업입니다.
    • 정보를 수정하는 경우, 일치하는 데이터를 대체할 텍스트를 지정하세요.
    • 정보를 일부만 수정하는 경우, 수정하려는 문자 수를 지정하고 일치하는 데이터의 첫 부분 또는 마지막 부분을 수정할 것인지 지정합니다.
    • 참고: 해싱을 선택하는 경우, 일치하는 UTF-8 바이트는 FarmHash의 64비트 지문으로 해시됩니다.
  7. 또는 regex와 일치하는 모든 이벤트에 태그를 추가하여 이벤트를 필터, 분석, 알림 설정할 수 있습니다.

This processor adds a field with the name of the host that sent the log. For example, hostname: 613e197f3526. Note: If the hostname already exists, the Worker throws an error and does not overwrite the existing hostname.

To set up this processor:

  • Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.

This processor converts the specified field into JSON objects.

To set up this processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.
  2. Enter the name of the field you want to parse JSON on.
    Note: The parsed JSON overwrites what was originally contained in the field.

Use this processor to enrich your logs with information from a reference table, which could be a local file or database.

To set up the enrichment table processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they do or do not match the filter query, are sent to the next step in the pipeline.
  2. Enter the source attribute of the log. The source attribute’s value is what you want to find in the reference table.
  3. Enter the target attribute. The target attribute’s value stores, as a JSON object, the information found in the reference table.
  4. Select the type of reference table you want to use, File or GeoIP.
    • For the File type:
      1. Enter the file path.
      2. Enter the column name. The column name in the enrichment table is used for matching the source attribute value. See the Enrichment file example.
    • For the GeoIP type, enter the GeoIP path.
Enrichment file example

For this example, merchant_id is used as the source attribute and merchant_info as the target attribute.

This is the example reference table that the enrichment processor uses:

merch_idmerchant_namecitystate
803Andy’s OttomansBoiseIdaho
536Cindy’s CouchesBoulderColorado
235Debra’s BenchesLas VegasNevada

merch_id is set as the column name the processor uses to find the source attribute’s value. Note: The source attribute’s value does not have to match the column name.

If the enrichment processor receives a log with "merchant_id":"536":

  • The processor looks for the value 536 in the reference table’s merch_id column.
  • After it finds the value, it adds the entire row of information from the reference table to the merchant_info attribute as a JSON object:
merchant_info {
    "merchant_name":"Cindy's Couches",
    "city":"Boulder",
    "state":"Colorado"
}

Many types of logs are meant to be used for telemetry to track trends, such as KPIs, over long periods of time. Generating metrics from your logs is a cost-effective way to summarize log data from high-volume logs, such as CDN logs, VPC flow logs, firewall logs, and networks logs. Use the generate metrics processor to generate either a count metric of logs that match a query or a distribution metric of a numeric value contained in the logs, such as a request duration.

Note: The metrics generated are custom metrics and billed accordingly. See Custom Metrics Billing for more information.

To set up the processor:

Click Manage Metrics to create new metrics or edit existing metrics. This opens a side panel.

  • If you have not created any metrics yet, enter the metric parameters as described in the Add a metric section to create a metric.
  • If you have already created metrics, click on the metric’s row in the overview table to edit or delete it. Use the search bar to find a specific metric by its name, and then select the metric to edit or delete it. Click Add Metric to add another metric.
Add a metric
  1. Enter a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they match the filter query, are sent to the next step in the pipeline. Note: Since a single processor can generate multiple metrics, you can define a different filter query for each metric.
  2. Enter a name for the metric.
  3. In the Define parameters section, select the metric type (count, gauge, or distribution). See the Count metric example and Distribution metric example. Also see Metrics Types for more information.
    • For gauge and distribution metric types, select a log field which has a numeric (or parseable numeric string) value that is used for the value of the generated metric.
    • For the distribution metric type, the log field’s value can be an array of (parseable) numerics, which is used for the generated metric’s sample set.
    • The Group by field determines how the metric values are grouped together. For example, if you have hundreds of hosts spread across four regions, grouping by region allows you to graph one line for every region. The fields listed in the Group by setting are set as tags on the configured metric.
  4. Click Add Metric.
Metrics Types

You can generate these types of metrics for your logs. See the Metrics Types and Distributions documentation for more details.

Metric typeDescriptionExample
COUNTRepresents the total number of event occurrences in one time interval. This value can be reset to zero, but cannot be decreased.You want to count the number of logs with status:error.
GAUGERepresents a snapshot of events in one time interval.You want to measure the latest CPU utilization per host for all logs in the production environment.
DISTRIBUTIONRepresent the global statistical distribution of a set of values calculated across your entire distributed infrastructure in one time interval.You want to measure the average time it takes for an API call to be made.
Count metric example

For this status:error log example:

{"status": "error", "env": "prod", "host": "ip-172-25-222-111.ec2.internal"}

To create a count metric that counts the number of logs that contain "status":"error" and groups them by env and host, enter the following information:

Input parametersValue
Filter query@status:error
Metric namestatus_error_total
Metric typeCount
Group byenv, prod
Distribution metric example

For this example of an API response log:

{
    "timestamp": "2018-10-15T17:01:33Z",
    "method": "GET",
    "status": 200,
    "request_body": "{"information"}",
    "response_time_seconds: 10
}

To create a distribution metric that measures the average time it takes for an API call to be made, enter the following information:

Input parametersValue
Filter query@method
Metric namestatus_200_response
Metric typeDistribution
Select a log attributeresponse_time_seconds
Group bymethod

Use this processor to add a field name and value of an environment variable to the log message.

To set up this processor:

  1. Define a filter query. Only logs that match the specified filter query are processed. All logs, regardless of whether they match the filter query, are sent to the next step in the pipeline.
  2. Enter the field name for the environment variable.
  3. Enter the environment variable name.
  4. Click Add Environment Variable if you want to add another environment variable.
Blocked environment variables

Environment variables that match any of the following patterns are blocked from being added to log messages because the environment variable could contain sensitive data.

  • CONNECTIONSTRING / CONNECTION-STRING / CONNECTION_STRING
  • AUTH
  • CERT
  • CLIENTID / CLIENT-ID / CLIENT_ID
  • CREDENTIALS
  • DATABASEURL / DATABASE-URL / DATABASE_URL
  • DBURL / DB-URL / DB_URL
  • KEY
  • OAUTH
  • PASSWORD
  • PWD
  • ROOT
  • SECRET
  • TOKEN
  • USER

The environment variable is matched to the pattern and not the literal word. For example, PASSWORD blocks environment variables like USER_PASSWORD and PASSWORD_SECRET from getting added to the log messages.

Install the Observability Pipelines Worker

  1. Select your platform in the Choose your installation platform dropdown menu.

  2. Enter the Datadog Agent address. This is the address and port where your Datadog Agent is sending its logging data. The Observability Pipelines Worker listens to this address for incoming logs.

  3. Provide the environment variables for each of your selected destinations.

    Enter the AWS access key ID and AWS secret access key for the S3 archive bucket you created earlier.

    There are no environment variables to configure.

    Enter the Azure connection string you created earlier. The connection string gives the Worker access to your Azure Storage bucket.

    To get the connection string:

    1. Navigate to Azure Storage accounts.
    2. Click Access keys under Security and networking in the left navigation menu.
    3. Copy the connection string for the storage account and paste it into the Azure connection string field on the Observability Pipelines Worker installation page.

    Datadog 로그 관리에 대해 설정할 환경 변수가 없습니다.

    Splunk HEC 토큰과 Splunk 인스턴스의 기본 URL을 입력합니다. 자세한 내용은 필수 구성 요소를 참조하세요.

    Worker는 HEC 토큰을 Splunk 수집 엔드포인트로 전달합니다. Observability Pipelines Worker가 로그를 처리한 후 로그를 지정된 Splunk 인스턴스 URL로 전송합니다.

    참고: Splunk HEC 대상은 대상을 설정하는지에 관계없이 모든 로그를 /services/collector/event 엔드포인트로 전달하여 출력을 JSON 또는 raw로 인코딩합니다.

    Sumo Logic HTTP 컬렉터(Collector) URL을 입력합니다. 자세한 내용은 전제 조건을 참조하세요.

    Enter the rsyslog or syslog-ng endpoint URL. For example, 127.0.0.1:9997. The Observability Pipelines Worker sends logs to this address and port.

    Enter the Google Chronicle endpoint URL. For example, https://chronicle.googleapis.com.

    1. Enter the Elasticsearch authentication username.
    2. Enter the Elasticsearch authentication password.
    3. Enter the Elasticsearch endpoint URL. For example, http://CLUSTER_ID.LOCAL_HOST_IP.ip.es.io:9200.
    1. Enter the OpenSearch authentication username.
    2. Enter the OpenSearch authentication password.
    3. Enter the OpenSearch endpoint URL. For example, http://<hostname.IP>:9200.
    1. Enter the Amazon OpenSearch authentication username.
    2. Enter the Amazon OpenSearch authentication password.
    3. Enter the Amazon OpenSearch endpoint URL. For example, http://<hostname.IP>:9200.
    1. Enter your New Relic account ID.
    2. Enter your New Relic license key.

  4. Follow the instructions for your environment to install the Worker.

    1. API 키 선택을 클릭해 사용하고 싶은 Datadog API 키를 선택하세요.
    2. 안내된 명령을 UI에 실행해 Worker를 설치하세요. 이 명령을 사용하면 이전에 입력한 환경 변수가 자동으로 채워집니다.
      docker run -i -e DD_API_KEY=<DATADOG_API_KEY> \
          -e DD_OP_PIPELINE_ID=<PIPELINE_ID> \
          -e DD_SITE=<DATADOG_SITE> \
          -e <SOURCE_ENV_VARIABLE> \
          -e <DESTINATION_ENV_VARIABLE> \
          -p 8088:8088 \
          datadog/observability-pipelines-worker run
      
      참고: 기본적으로 docker run 명령은 작업자가 수신 중인 포트와 동일한 포트를 노출시킵니다. 작업자의 컨테이너 포트를 도커(Docker) 호스트의 다른 포트에 매핑하려면 명령에 -p | --publish 옵션을 사용하세요:
      -p 8282:8088 datadog/observability-pipelines-worker run
      
    3. 관측 가능성 파이프라인 설치 페이지로 돌아가서 배포를 클릭하세요.

    파이프라인 설정을 변경하려면 기존 파이프라인 업데이트를 참조하세요.

    1. Download the Helm chart values file. If you are not using a managed service such as Amazon EKS, Google GKE, or Azure AKS, see Self-hosted and self-managed Kubernetes clusters before continuing to the next step.
    2. Click Select API key to choose the Datadog API key you want to use.
    3. Add the Datadog chart repository to Helm:
      helm repo add datadog https://helm.datadoghq.com
      
      If you already have the Datadog chart repository, run the following command to make sure it is up to date:
      helm repo update
      
    4. Run the command provided in the UI to install the Worker. The command is automatically populated with the environment variables you entered earlier.
      helm upgrade --install opw \
      -f values.yaml \
      --set datadog.apiKey=<DATADOG_API_KEY> \
      --set datadog.pipelineId=<PIPELINE_ID> \
      --set <SOURCE_ENV_VARIABLES> \
      --set <DESTINATION_ENV_VARIABLES> \
      --set service.ports[0].protocol=TCP,service.ports[0].port=<SERVICE_PORT>,service.ports[0].targetPort=<TARGET_PORT> \
      datadog/observability-pipelines-worker
      
      Note: By default, the Kubernetes Service maps incoming port <SERVICE_PORT> to the port the Worker is listening on (<TARGET_PORT>). If you want to map the Worker’s pod port to a different incoming port of the Kubernetes Service, use the following service.ports[0].port and service.ports[0].targetPort values in the command:
      --set service.ports[0].protocol=TCP,service.ports[0].port=8088,service.ports[0].targetPort=8282
      
    5. Navigate back to the Observability Pipelines installation page and click Deploy.

    See Update Existing Pipelines if you want to make changes to your pipeline’s configuration.

    Self-hosted and self-managed Kubernetes clusters

    If you are running a self-hosted and self-managed Kubernetes cluster, and have defined zones with node labels using topology.kubernetes.io/zone, then you can use the Helm chart values file as is. However, if you are not using the label topology.kubernetes.io/zone, you need to update the topologyKey in the values.yaml file to match the key you are using. Or if you run your Kubernetes install without zones, remove the entire topology.kubernetes.io/zone section.

    1. API 키 선택을 클릭해 사용하고 싶은 Datadog API 키를 선택하세요.

    2. UI에 제공된 원스텝 명령을 실행하여 Worker를 설치합니다.

      참고: /etc/default/observability-pipelines-worker에서 Worker가 사용하는 환경 변수는 설치 스크립트를 실행할 때 업데이트되지 않습니다. 변경이 필요한 경우 파일을 수동으로 업데이트하고 Worker를 다시 시작하세요.

    한 줄 설치 스크립트를 사용하지 않으려면 다음 단계별 지침을 따르세요.

    1. HTTPS를 사용하여 다운로드할 수 있도록 APT 전송을 설정합니다:
      sudo apt-get update
      sudo apt-get install apt-transport-https curl gnupg
      
    2. 다음 명령을 실행하여 시스템에 Datadog deb 리포지토리를 설정하고 Datadog 아카이브 키링을 생성합니다:
      sudo sh -c "echo 'deb [signed-by=/usr/share/keyrings/datadog-archive-keyring.gpg] https://apt.datadoghq.com/ stable observability-pipelines-worker-2' > /etc/apt/sources.list.d/datadog-observability-pipelines-worker.list"
      sudo touch /usr/share/keyrings/datadog-archive-keyring.gpg
      sudo chmod a+r /usr/share/keyrings/datadog-archive-keyring.gpg
      curl https://keys.datadoghq.com/DATADOG_APT_KEY_CURRENT.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
      curl https://keys.datadoghq.com/DATADOG_APT_KEY_06462314.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
      curl https://keys.datadoghq.com/DATADOG_APT_KEY_F14F620E.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
      curl https://keys.datadoghq.com/DATADOG_APT_KEY_C0962C7D.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
      
    3. 다음 명령을 실행하여 로컬 apt 리포지토리를 업데이트하고 Worker를 설치합니다:
      sudo apt-get update
      sudo apt-get install observability-pipelines-worker datadog-signing-keys
      
    4. Worker의 환경 파일에 키, 사이트(예: US1의 경우 datadoghq.com), 소스 및 대상 환경 변수를 추가합니다.
      sudo cat &lt;<EOF > /etc/default/observability-pipelines-worker
      DD_API_KEY=<DATADOG_API_KEY>
      DD_OP_PIPELINE_ID=<PIPELINE_ID>
      DD_SITE=<DATADOG_SITE>
      <SOURCE_ENV_VARIABLES>
      <DESTINATION_ENV_VARIABLES>
      EOF
      
    5. Worker를 시작합니다.
      sudo systemctl restart observability-pipelines-worker
      

    파이프라인의 설정을 변경하려면 기존 파이프라인 업데이트를 참조하세요.

    1. API 키 선택을 클릭해 사용하고 싶은 Datadog API 키를 선택하세요.

    2. UI에 제공된 원스텝 명령을 실행하여 Worker를 설치합니다.

      참고: /etc/default/observability-pipelines-worker에서 Worker가 사용하는 환경 변수는 설치 스크립트를 실행할 때 업데이트되지 않습니다. 변경이 필요한 경우 파일을 수동으로 업데이트하고 Worker를 다시 시작하세요.

    한 줄 설치 스크립트를 사용하지 않으려면 다음 단계별 지침을 따르세요.

    1. 아래 명령어로 시스템에 Datadog rpm 리포지토리를 설정합니다. 참고: RHEL 8.1 또는 CentOS 8.1을 실행하는 경우, 아래 설정 에서 repo_gpgcheck=1 대신 repo_gpgcheck=0 을 사용하세요.
      cat &lt;<EOF > /etc/yum.repos.d/datadog-observability-pipelines-worker.repo
      [observability-pipelines-worker]
      name = Observability Pipelines Worker
      baseurl = https://yum.datadoghq.com/stable/observability-pipelines-worker-2/\$basearch/
      enabled=1
      gpgcheck=1
      repo_gpgcheck=1
      gpgkey=https://keys.datadoghq.com/DATADOG_RPM_KEY_CURRENT.public
          https://keys.datadoghq.com/DATADOG_RPM_KEY_B01082D3.public
      EOF
      
    2. 패키지를 업데이트하고 Worker를 설치합니다.
      sudo yum makecache
      sudo yum install observability-pipelines-worker
      
    3. Worker의 환경 파일에 키, 사이트(예: US1의 경우 datadoghq.com), 소스 및 대상 환경 변수를 추가합니다.
      sudo cat &lt;&lt;-EOF > /etc/default/observability-pipelines-worker
      DD_API_KEY=<API_KEY>
      DD_OP_PIPELINE_ID=<PIPELINE_ID>
      DD_SITE=<SITE>
      <SOURCE_ENV_VARIABLES>
      <DESTINATION_ENV_VARIABLES>
      EOF
      
    4. Worker를 시작합니다.
      sudo systemctl restart observability-pipelines-worker
      
    5. 관측 가능성 파이프라인 설치 페이지로 돌아가서 배포를 클릭하세요.

    파이프라인의 설정을 변경하려면 기존 파이프라인 업데이트를 참조하세요.

    1. 파이프라인의 예상 로그 볼륨을 입력하려면 드롭다운 메뉴 옵션 중 하나를 선택하세요.

      옵션설명
      Unsure로그 볼륨을 예상할 수 없거나 Worker를 테스트하고 싶을 경우 이 옵션을 선택하세요. 이 옵션의 경우 일반적인 목적의 t4g.large 인스턴스 2개를 최댓값으로 EC2 Auto Scaling 그룹을 프로비저닝합니다.
      1-5 TB/day이 옵션을 선택하면 컴퓨팅 최적화된 c6g.large 인스턴스 2개를 최댓값으로 EC2 Auto Scaling 그룹을 프로비저닝합니다.
      5-10 TB/day이 옵션을 선택하면 컴퓨팅 최적화된 c6g.large 인스턴스 2개를 최솟값으로, 5개를 최댓값으로 EC2 Auto Scaling 그룹을 프로비저닝합니다.
      >10 TB/dayDatadog에서는 대용량 프로덕션 배포에 이 옵션을 사용할 것을 권고합니다. 이 옵션을 선택하면 컴퓨팅 최적화된 c6g.xlarge 인스턴스 2개를 최솟값으로, 10개를 최댓값으로 EC2 Auto Scaling 그룹을 프로비저닝합니다.

      참고: 다른 파라미터는 Worker 배포에 적절한 기본값으로 설정되어 있습니다. 그러나 스택을 생성하기 전에 AWS 콘솔에서 내 사용 사례에 맞게 값을 조정할 수 있습니다.

    2. Worker를 설치할 때 사용할 AWS 리전을 선택하세요.

    3. API 키 선택을 클릭해 사용하고 싶은 Datadog API 키를 선택하세요.

    4. Launch CloudFormation Template을 클릭해 AWS 콘솔로 이동해 스택 구성을 검토한 후 실행하세요. CloudFormation 파라미터가 올바른지 다시 확인하세요.

    5. Worker를 설치할 때 사용할 VPC와 서브넷을 선택하세요.

    6. IAM과 관련해 필요한 권한 체크 상자가 모두 선택되어 있는지 검토하세요. Submit을 클릭해 스택을 생성하세요. 이 지점부터 CloudFormation에서 설치를 처리합니다. Worker 인스턴스가 실행되고, 필요한 소프트웨어가 설치되며, Worker가 자동으로 시작됩니다.

    7. 관측 가능성 파이프라인 설치 페이지로 돌아가서 배포를 클릭하세요.

    파이프라인 구성을 변경하고 싶으면 기존 파이프라인 업데이트을 참고하세요.

Connect the Datadog Agent to the Observability Pipelines Worker

Use the Agent configuration file or the Agent Helm chart values file to connect the Datadog Agent to the Observability Pipelines Worker.

To send Datadog Agent logs to the Observability Pipelines Worker, update your Agent configuration file with the following:

observability_pipelines_worker:
  logs:
    enabled: true
    url: "http://<OPW_HOST>:8282"

<OPW_HOST> is the IP/URL of the host (or load balancer) associated with the Observability Pipelines Worker.

For CloudFormation installs, use the LoadBalancerDNS CloudFormation output for the URL.

For Kubernetes installs, you can use the internal DNS record of the Observability Pipelines Worker service. For example: opw-observability-pipelines-worker.default.svc.cluster.local.

After you restart the Agent, your observability data should be going to the Worker, processed by the pipeline, and delivered to Datadog.

To send Datadog Agent logs to the Observability Pipelines Worker, update your Datadog Helm chart datadog-values.yaml with the following environment variables. See Agent Environment Variables for more information.

datadog:
  env:
    - name: DD_OBSERVABILITY_PIPELINES_WORKER_LOGS_ENABLED
      value: true
    - name: DD_OBSERVABILITY_PIPELINES_WORKER_LOGS_URL
      value: "http://<OPW_HOST>:8282"

<OPW_HOST> is the IP/URL of the host (or load balancer) associated with the Observability Pipelines Worker.

For Kubernetes installs, you can use the internal DNS record of the Observability Pipelines Worker service. For example: opw-observability-pipelines-worker.default.svc.cluster.local.

PREVIEWING: rtrieu/product-analytics-ui-changes