Azure Container Apps

概要

Azure Container Apps is a fully managed serverless platform for deploying and scaling container-based applications. Datadog provides monitoring and log collection for Container Apps through the Azure integration. Datadog also provides a solution for instrumenting your Container Apps applications with a purpose-built Agent to enable tracing, custom metrics, and direct log collection.

前提条件

Datadog API キーを取得済みであることと、Datadog トレーシングライブラリがサポートするプログラミング言語を使用していることを確認してください。

アプリケーションをインスツルメントする

アプリケーションをインスツルメンテーションするには、Dockerfileビルドパックの 2 つの方法があります。

Dockerfile

Datadog publishes new releases of the serverless-init container image to Google’s gcr.io, AWS’ ECR, and on Docker Hub:

hub.docker.comgcr.iopublic.ecr.aws
datadog/serverless-initgcr.io/datadoghq/serverless-initpublic.ecr.aws/datadog/serverless-init

イメージはセマンティックバージョニングに基づいてタグ付けされ、新しいバージョンごとに 3 つの関連タグが付与されます。

  • 11-alpine: 重大な変更がない最新のマイナーリリースを追跡する場合、これらを使用します
  • 1.x.x1.x.x-alpine: ライブラリの正確なバージョンにピン留めする場合、これらを使用します
  • latestlatest-alpine: 重大な変更が含まれる可能性がある最新のバージョンリリースに従う場合、これらを使用します

serverless-init の動作

serverless-init アプリケーションはプロセスをラップし、サブプロセスとしてこれを実行します。このアプリケーションはメトリクス用の DogStatsD リスナーとトレース用の Trace Agent リスナーを起動します。アプリケーションの stdout/stderr ストリームをラップすることでログを収集します。ブートストラップの後、serverless-init はサブプロセスとしてコマンドを起動します。

完全なインスツルメンテーションを得るには、Docker コンテナ内で実行する最初のコマンドとして datadog-init を呼び出していることを確認します。これを行うには、エントリーポイントとして設定するか、CMD の最初の引数として設定します。

Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN npm install --prefix /dd_tracer/node dd-trace  --save
ENV DD_SERVICE=datadog-demo-run-nodejs
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["/nodejs/bin/node", "/path/to/your/app.js"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. Copy the Datadog Node.JS tracer into your Docker image.

    RUN npm install --prefix /dd_tracer/node dd-trace  --save
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-nodejs
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["/nodejs/bin/node", "/path/to/your/app.js"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN npm install --prefix /dd_tracer/node dd-trace  --save
ENV DD_SERVICE=datadog-demo-run-nodejs
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "/nodejs/bin/node", "/path/to/your/app.js"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN npm install --prefix /dd_tracer/node dd-trace  --save
ENV DD_SERVICE=datadog-demo-run-nodejs
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["/your_entrypoint.sh", "/nodejs/bin/node", "/path/to/your/app.js"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN pip install --target /dd_tracer/python/ ddtrace
ENV DD_SERVICE=datadog-demo-run-python
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["/dd_tracer/python/bin/ddtrace-run", "python", "app.py"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. Install the Datadog Python tracer.

    RUN pip install --target /dd_tracer/python/ ddtrace
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-python
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint, launched by the Datadog trace library. Adapt this line to your needs.

    CMD ["/dd_tracer/python/bin/ddtrace-run", "python", "app.py"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN pip install --target /dd_tracer/python/ ddtrace
ENV DD_SERVICE=datadog-demo-run-python
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "/dd_tracer/python/bin/ddtrace-run", "python", "app.py"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
RUN pip install --target /dd_tracer/python/ ddtrace
ENV DD_SERVICE=datadog-demo-run-python
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "/dd_tracer/python/bin/ddtrace-run", "python", "app.py"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD 'https://dtdg.co/latest-java-tracer' /dd_tracer/java/dd-java-agent.jar
ENV DD_SERVICE=datadog-demo-run-java
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["./mvnw", "spring-boot:run"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. Add the Datadog Java tracer to your Docker image.

    ADD 'https://dtdg.co/latest-java-tracer' /dd_tracer/java/dd-java-agent.jar
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-java
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["./mvnw", "spring-boot:run"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD 'https://dtdg.co/latest-java-tracer' /dd_tracer/java/dd-java-agent.jar
ENV DD_SERVICE=datadog-demo-run-java
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "./mvnw", "spring-boot:run"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD 'https://dtdg.co/latest-java-tracer' /dd_tracer/java/dd-java-agent.jar
ENV DD_SERVICE=datadog-demo-run-java
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "./mvnw", "spring-boot:run"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Manually install the Go tracer before you deploy your application. Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENTRYPOINT ["/app/datadog-init"]
ENV DD_SERVICE=datadog-demo-run-go
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/path/to/your-go-binary"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-go
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["/path/to/your-go-binary"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENV DD_SERVICE=datadog-demo-run-go
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "/path/to/your-go-binary"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENV DD_SERVICE=datadog-demo-run-go
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "/path/to/your-go-binary"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Note: You can also use Orchestrion, a tool for automatically instrumenting Go code. Orchestrion is in private beta. For more information, open a GitHub issue in the Orchestrion repo, or contact Support.

Add the following instructions and arguments to your Dockerfile.

# For alpine or arm64 builds, refer to the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["dotnet", "helloworld.dll"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 / /app/
    
  2. Copy the Datadog .NET tracer into your Docker image. For linux/amd64, include the following:

    RUN chmod +x /app/dotnet.sh && /app/dotnet.sh
    

    For other architecture types, configure your Dockerfile like so:

    # For arm64 use datadog-dotnet-apm-2.57.0.arm64.tar.gz
    # For alpine use datadog-dotnet-apm-2.57.0-musl.tar.gz
    ARG TRACER_VERSION
    ADD https://github.com/DataDog/dd-trace-dotnet/releases/download/v${TRACER_VERSION}/datadog-dotnet-apm-${TRACER_VERSION}.tar.gz /tmp/datadog-dotnet-apm.tar.gz
    
    RUN mkdir -p /dd_tracer/dotnet/ && tar -xzvf /tmp/datadog-dotnet-apm.tar.gz -C /dd_tracer/dotnet/ && rm /tmp/datadog-dotnet-apm.tar.gz
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-dotnet
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["dotnet", "helloworld.dll"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

# For alpine or arm64 builds, refer to tracer installation of the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "dotnet", "helloworld.dll"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

# For alpine or arm64 builds, refer to tracer installation of the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "dotnet", "helloworld.dll"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Manually install the Ruby tracer before you deploy your application. See the example application.

Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENV DD_SERVICE=datadog-demo-run-ruby
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENV DD_TRACE_PROPAGATION_STYLE=datadog
ENTRYPOINT ["/app/datadog-init"]
CMD ["rails", "server", "-b", "0.0.0.0"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. (Optional) add Datadog tags

    ENV DD_SERVICE=datadog-demo-run-ruby
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  3. This environment variable is needed for trace propagation to work properly in Cloud Run. Ensure that you set this variable for all Datadog-instrumented downstream services.

    ENV DD_TRACE_PROPAGATION_STYLE=datadog
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["rails", "server", "-b", "0.0.0.0"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENV DD_SERVICE=datadog-demo-run-ruby
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENV DD_TRACE_PROPAGATION_STYLE=datadog
CMD ["/app/datadog-init", "rails", "server", "-b", "0.0.0.0"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ENV DD_SERVICE=datadog-demo-run-ruby
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENV DD_TRACE_PROPAGATION_STYLE=datadog
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "rails", "server", "-b", "0.0.0.0"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

Add the following instructions and arguments to your Dockerfile.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD https://github.com/DataDog/dd-trace-php/releases/latest/download/datadog-setup.php /datadog-setup.php
RUN php /datadog-setup.php --php-bin=all
ENV DD_SERVICE=datadog-demo-run-php
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]

# use the following for an Apache and mod_php based image
RUN sed -i "s/Listen 80/Listen 8080/" /etc/apache2/ports.conf
EXPOSE 8080
CMD ["apache2-foreground"]

# use the following for an Nginx and php-fpm based image
RUN ln -sf /dev/stdout /var/log/nginx/access.log && ln -sf /dev/stderr /var/log/nginx/error.log
EXPOSE 8080
CMD php-fpm; nginx -g daemon off;

Note: The datadog-init entrypoint wraps your process and collects logs from it. To get logs working properly, ensure that your Apache, Nginx, or PHP processes are writing output to stdout.

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
    
  2. Copy and install the Datadog PHP tracer.

    ADD https://github.com/DataDog/dd-trace-php/releases/latest/download/datadog-setup.php /datadog-setup.php
    RUN php /datadog-setup.php --php-bin=all
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-php
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your application.

    Use the following for an apache and mod_php based image:

    RUN sed -i "s/Listen 80/Listen 8080/" /etc/apache2/ports.conf
    EXPOSE 8080
    CMD ["apache2-foreground"]
    

    Use the following for an nginx and php-fpm based image:

    RUN ln -sf /dev/stdout /var/log/nginx/access.log && ln -sf /dev/stderr /var/log/nginx/error.log
    EXPOSE 8080
    CMD php-fpm; nginx -g daemon off;
    

Alternative configuration: CMD argument

If you already have an entrypoint defined inside your Dockerfile, and you are using an Apache and mod_php based image, you can instead modify the CMD argument.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD https://github.com/DataDog/dd-trace-php/releases/latest/download/datadog-setup.php /datadog-setup.php
RUN php /datadog-setup.php --php-bin=all
ENV DD_SERVICE=datadog-demo-run-php
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
RUN sed -i "s/Listen 80/Listen 8080/" /etc/apache2/ports.conf
EXPOSE 8080
CMD ["/app/datadog-init", "apache2-foreground"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

COPY --from=datadog/serverless-init:1 /datadog-init /app/datadog-init
ADD https://github.com/DataDog/dd-trace-php/releases/latest/download/datadog-setup.php /datadog-setup.php
RUN php /datadog-setup.php --php-bin=all
ENV DD_SERVICE=datadog-demo-run-php
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]

# use the following for an Apache and mod_php based image
RUN sed -i "s/Listen 80/Listen 8080/" /etc/apache2/ports.conf
EXPOSE 8080
CMD ["your_entrypoint.sh", "apache2-foreground"]

# use the following for an Nginx and php-fpm based image
RUN ln -sf /dev/stdout /var/log/nginx/access.log && ln -sf /dev/stderr /var/log/nginx/error.log
EXPOSE 8080
CMD your_entrypoint.sh php-fpm; your_entrypoint.sh nginx -g daemon off;

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

2. アプリケーションを構成する

コンテナが構築され、レジストリにプッシュされたら、最後の手順として Datadog Agent 用に必要な環境変数を設定します。

  • DD_API_KEY: データを Datadog アカウントに送信するために使用する Datadog API キー。プライバシーと安全性の問題を考慮して、Azure シークレットに設定する必要があります。

  • DD_SITE: Datadog のエンドポイントと Web サイト。このページの右側で自分のサイトを選択します。あなたのサイトは です。

  • DD_AZURE_SUBSCRIPTION_ID: コンテナアプリリソースに関連付けられた Azure サブスクリプション ID (必須)。

  • DD_AZURE_RESOURCE_GROUP: コンテナアプリリソースに関連付けられた Azure リソースグループ (必須)。

  • DD_TRACE_ENABLED: true に設定してトレースを有効にします。

環境変数とその機能の詳細については、追加の構成を参照してください。

次のコマンドはサービスをデプロイし、外部からの接続がサービスに到達できるようにするためのコマンドです。DD_API_KEY を環境変数として設定し、サービスのリスニングポートを 80 に設定します。

az containerapp up \
  --name APP_NAME \
  --resource-group RESOURCE_GROUP \
  --ingress external \
  --target-port 80 \
  --env-vars "DD_API_KEY=$DD_API_KEY" "DD_TRACE_ENABLED=true" "DD_SITE=datadoghq.com" \
  --image YOUR_REGISTRY/YOUR_PROJECT

3. 結果

Once the deployment is completed, your metrics and traces are sent to Datadog. In Datadog, navigate to Infrastructure > Serverless to see your serverless metrics and traces.

追加の構成

  • 高度なトレース: Datadog Agent は、一般的なフレームワーク向けに基本的なトレース機能をすでにいくつか提供しています。さらに詳しい情報については、高度なトレースガイドに従ってください。

  • ログ: Azure インテグレーションを使用している場合は、すでにログが収集されています。また、環境変数 DD_LOGS_ENABLEDtrue に設定することで、サーバーレスインスツルメンテーションを通じて直接アプリケーションログをキャプチャすることも可能です。

  • カスタムメトリクス: DogStatsd クライアントを使って、カスタムメトリクスを送信することができます。Cloud Run やその他のサーバーレスアプリケーションの監視には、ディストリビューションメトリクスを使用します。ディストリビューションは、デフォルトで avgsummaxmincount の集計データを提供します。Metric Summary ページでは、パーセンタイル集計 (p50、p75、p90、p95、p99) を有効にすることができ、タグの管理も可能です。ゲージメトリクスタイプの分布を監視するには、時間集計と空間集計の両方で avg を使用します。カウントメトリクスタイプの分布を監視するには、時間集計と空間集計の両方で sum を使用します。

  • トレースサンプリング: サーバーレスアプリケーションの APM トレースリクエストサンプリングレートを管理するには、関数の DD_TRACE_SAMPLE_RATE 環境変数を 0.000 (コンテナアプリのリクエストをトレースしない) から 1.000 (すべてのコンテナアプリのリクエストをトレースする) の間の値に設定します。

メトリクスは、アプリケーションの 100% のトラフィックに基づいて計算され、どのようなサンプリング構成であっても正確な値を維持します。

環境変数

変数説明
DD_API_KEYDatadog API キー - 必須
DD_SITEDatadog サイト - 必須
DD_LOGS_ENABLEDtrue の場合、ログ (stdout と stderr) を Datadog に送信します。デフォルトは false です。
DD_LOGS_INJECTIONtrue の場合、JavaNode.js.NET、および PHP でサポートされているロガーのトレースデータですべてのログをリッチ化します。PythonGoRuby については追加のドキュメントを参照してください。
DD_TRACE_SAMPLE_RATEトレース取り込みのサンプルレート 0.01.0 をコントロールします
DD_SERVICE統合サービスタグ付けを参照してください。
DD_VERSION統合サービスタグ付けを参照してください。
DD_ENV統合サービスタグ付けを参照してください。
DD_SOURCE統合サービスタグ付けを参照してください。
DD_TAGS統合サービスタグ付けを参照してください。

トラブルシューティング

このインテグレーションは、お使いのランタイムが完全な SSL を実装しているかどうかに依存します。Node の slim イメージを使用している場合、証明書を含めるために Dockerfile に次のコマンドを追加する必要があるかもしれません。

RUN apt-get update && apt-get install -y ca-certificates

参考資料

PREVIEWING: esther/docs-8632-slo-blog-links