概要

To instrument your Azure App Service containers with a sidecar, see Instrument Azure App Service - Sidecar Pattern.

This instrumentation method uses serverless-init and provides the following additional monitoring capabilities for containerized Linux Azure App Service workloads:

  • 自動インスツルメンテーションを用いた完全分散型 APM トレーシング。
  • カスタマイズされた APM サービスとトレースビューは、関連する Azure App Service のメトリクスとメタデータを表示します。
  • スパンのカスタマイズが可能な、手動 APM インスツルメンテーション機能。
  • アプリケーションログへの Trace_ID 挿入。
  • DogStatsD を使用したカスタムメトリクス送信のサポート。

前提条件

Datadog API キーを取得済みであることと、Datadog トレーシングライブラリがサポートするプログラミング言語を使用していることを確認してください。

アプリケーションをインスツルメントする

Dockerfile

Datadog publishes new releases of the serverless-init container image to Google’s gcr.io, Azure ACR, AWS’s ECR, and on Docker Hub:

datadoghq.azurecr.iodockerhub.iogcr.iopublic.ecr.aws
datadoghq.azurecr.io/serverless-initdatadog/serverless-initgcr.io/datadoghq/serverless-initpublic.ecr.aws/datadog/serverless-init

イメージはセマンティックバージョニングに基づいてタグ付けされ、新しいバージョンごとに 3 つの関連タグが付与されます。

  • 11-alpine: 重大な変更がない最新のマイナーリリースを追跡する場合、これらを使用します
  • 1.x.x1.x.x-alpine: ライブラリの正確なバージョンにピン留めする場合、これらを使用します
  • latestlatest-alpine: 重大な変更が含まれる可能性がある最新のバージョンリリースに従う場合、これらを使用します

Add the following instructions and arguments to your Dockerfile.

# For alpine or arm64 builds, refer to the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["dotnet", "helloworld.dll"]

Explanation

  1. Copy the Datadog serverless-init into your Docker image.

    COPY --from=datadog/serverless-init:1 / /app/
    
  2. Copy the Datadog .NET tracer into your Docker image. For linux/amd64, include the following:

    RUN chmod +x /app/dotnet.sh && /app/dotnet.sh
    

    For other architecture types, configure your Dockerfile like so:

    # For arm64 use datadog-dotnet-apm-2.57.0.arm64.tar.gz
    # For alpine use datadog-dotnet-apm-2.57.0-musl.tar.gz
    ARG TRACER_VERSION
    ADD https://github.com/DataDog/dd-trace-dotnet/releases/download/v${TRACER_VERSION}/datadog-dotnet-apm-${TRACER_VERSION}.tar.gz /tmp/datadog-dotnet-apm.tar.gz
    
    RUN mkdir -p /dd_tracer/dotnet/ && tar -xzvf /tmp/datadog-dotnet-apm.tar.gz -C /dd_tracer/dotnet/ && rm /tmp/datadog-dotnet-apm.tar.gz
    

    If you install the Datadog tracer library directly in your application, as outlined in the manual tracer instrumentation instructions, omit this step.

  3. (Optional) Add Datadog tags.

    ENV DD_SERVICE=datadog-demo-run-dotnet
    ENV DD_ENV=datadog-demo
    ENV DD_VERSION=1
    
  4. Change the entrypoint to wrap your application in the Datadog serverless-init process. Note: If you already have an entrypoint defined inside your Dockerfile, see the alternative configuration.

    ENTRYPOINT ["/app/datadog-init"]
    
  5. Execute your binary application wrapped in the entrypoint. Adapt this line to your needs.

    CMD ["dotnet", "helloworld.dll"]
    

Alternative configuration

If you already have an entrypoint defined inside your Dockerfile, you can instead modify the CMD argument.

# For alpine or arm64 builds, refer to tracer installation of the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
CMD ["/app/datadog-init", "dotnet", "helloworld.dll"]

If you require your entrypoint to be instrumented as well, you can swap your entrypoint and CMD arguments instead. For more information, see How serverless-init works.

# For alpine or arm64 builds, refer to tracer installation of the explanation section
COPY --from=datadog/serverless-init:1 / /app/
RUN chmod +x /app/dotnet.sh && /app/dotnet.sh

ENV DD_SERVICE=datadog-demo-run-dotnet
ENV DD_ENV=datadog-demo
ENV DD_VERSION=1
ENTRYPOINT ["/app/datadog-init"]
CMD ["your_entrypoint.sh", "dotnet", "helloworld.dll"]

As long as your command to run is passed as an argument to datadog-init, you will receive full instrumentation.

2. アプリケーションを構成する

コンテナが構築され、レジストリにプッシュされたら、最後の手順として Datadog Agent 用に必要な環境変数を設定します。

  • DD_API_KEY: データを Datadog アカウントに送信するために使用する Datadog API キー。プライバシーと安全性の問題を考慮して、Azure シークレットに設定する必要があります。
  • DD_SITE: Datadog のエンドポイントと Web サイト。このページの右側で自分のサイトを選択します。あなたのサイトは datadoghq.com です。
  • DD_TRACE_ENABLED: true に設定してトレースを有効にします。

環境変数とその機能の詳細については、追加の構成を参照してください。

3. 結果

デプロイが完了すると、メトリクスとトレースが Datadog に送信されます。Datadog で Infrastructure->Serverless に移動すると、サーバーレスメトリクスとトレースを確認できます。

デプロイ

ダウンタイムなしで Datadog インスツルメンテーションを更新するには、デプロイメントスロットを使用します。GitHub Action for Azure CLI を使用するワークフローを作成できます。

サンプルの [GitHub ワークフロー][workflow]を参照してください。

追加の構成

  • 高度なトレース: Datadog Agent は、一般的なフレームワーク向けに基本的なトレース機能をすでにいくつか提供しています。さらに詳しい情報については、高度なトレースガイドに従ってください。

  • ログ: Azure インテグレーションを使用している場合は、すでにログが収集されています。また、環境変数 DD_LOGS_ENABLEDtrue に設定することで、サーバーレスインスツルメンテーションを通じて直接アプリケーションログをキャプチャすることも可能です。

  • カスタムメトリクス: DogStatsd クライアントを使って、カスタムメトリクスを送信することができます。Cloud Run やその他のサーバーレスアプリケーションの監視には、ディストリビューションメトリクスを使用します。ディストリビューションは、デフォルトで avgsummaxmincount の集計データを提供します。Metric Summary ページでは、パーセンタイル集計 (p50、p75、p90、p95、p99) を有効にすることができ、タグの管理も可能です。ゲージメトリクスタイプの分布を監視するには、時間集計と空間集計の両方で avg を使用します。カウントメトリクスタイプの分布を監視するには、時間集計と空間集計の両方で sum を使用します。

  • トレースサンプリング: サーバーレスアプリケーションの APM トレースリクエストサンプリングレートを管理するには、関数の DD_TRACE_SAMPLE_RATE 環境変数を 0.000 (コンテナアプリのリクエストをトレースしない) から 1.000 (すべてのコンテナアプリのリクエストをトレースする) の間の値に設定します。

メトリクスは、アプリケーションの 100% のトラフィックに基づいて計算され、どのようなサンプリング構成であっても正確な値を維持します。

環境変数

変数説明
DD_API_KEYDatadog API キー - 必須
DD_SITEDatadog サイト - 必須
DD_LOGS_ENABLEDtrue の場合、ログ (stdout と stderr) を Datadog に送信します。デフォルトは false です。
DD_LOGS_INJECTIONtrue の場合、JavaNode.js.NET、および PHP でサポートされているロガーのトレースデータですべてのログをリッチ化します。PythonGoRuby については追加のドキュメントを参照してください。
DD_TRACE_SAMPLE_RATEトレース取り込みのサンプルレート 0.01.0 をコントロールします
DD_SERVICE統合サービスタグ付けを参照してください。
DD_VERSION統合サービスタグ付けを参照してください。
DD_ENV統合サービスタグ付けを参照してください。
DD_SOURCE統合サービスタグ付けを参照してください。
DD_TAGS統合サービスタグ付けを参照してください。

トラブルシューティング

トレースやカスタムメトリクスデータを期待通りに受信できない場合は、App Service logs を有効にしてデバッグログを受信してください。

Datadog サポートLog stream の内容を共有してください。

参考資料

お役に立つドキュメント、リンクや記事:

PREVIEWING: mahashree.rajendran/update-streams