Cette page n'est pas encore disponible en français, sa traduction est en cours.
Si vous avez des questions ou des retours sur notre projet de traduction actuel, n'hésitez pas à nous contacter.

Compose is a Docker tool that simplifies building applications on Docker by allowing you to define, build and run multiple containers as a single application.

While the single container installation instructions gets the stock Datadog Agent container running, you may want to enable integrations for other containerized services that are part of your Compose application. To do this, you need to combine integration YAML files with the base Datadog Agent image to create your Datadog Agent container. Then, add your container to the Compose YAML.

Redis example

The following is an example of how you can monitor a Redis container using Compose. The file structure is:

|- docker-compose.yml
|- datadog
  |- Dockerfile
  |- conf.d
    |-redisdb.yaml

The docker-compose.yml file describes how your containers work together and sets some of the configuration details for the containers.

version: '3'
services:
  redis:
    image: redis
  datadog:
    build: datadog
    pid: host
    environment:
     - DD_API_KEY=${DD_API_KEY}
     - DD_SITE=
    volumes:
     - /var/run/docker.sock:/var/run/docker.sock
     - /proc/:/host/proc/:ro
     - /sys/fs/cgroup:/host/sys/fs/cgroup:ro

The redisdb.yaml is patterned after the redisdb.yaml.example file and tells the Datadog Agent to look for Redis on the host named redis (defined in docker-compose.yaml above) and to use the standard Redis port:

init_config:

instances:
    - host: redis
      port: 6379

The Dockerfile is used to instruct Docker compose to build a Datadog Agent image including the redisdb.yaml file at the right location:

FROM gcr.io/datadoghq/agent:latest
ADD conf.d/redisdb.yaml /etc/datadog-agent/conf.d/redisdb.yaml

APM Trace Collection

Building on the Redis example above, you can also use Compose to configure the Datadog agent to collect application traces. This docker-compose.yml is pulled from this Docker compose example on GitHub.

version: "4"
services:
  web:
    build: web
    command: ddtrace-run python app.py
    ports:
     - "5000:5000"
    volumes:
     - ./web:/code # modified here to take into account the new app path
    links:
     - redis
    environment:
     - DATADOG_HOST=datadog # used by the web app to initialize the Datadog library
     - DD_AGENT_HOST=dd-agent # points to dd-agent to send traces
  redis:
    image: redis
  # agent section
  datadog:
    container_name: dd-agent
    build: datadog
    links:
     - redis # ensures that redis is a host that the container can find
     - web # ensures that the web app can send metrics
    environment:
     - DD_API_KEY=<YOUR_API_KEY>
     - DD_DOGSTATSD_NON_LOCAL_TRAFFIC=true # enables agent to receive custom metrics from other containers
     - DD_APM_ENABLED=true # enables tracing
     - DD_APM_NON_LOCAL_TRAFFIC=true # enables agent to receive traces from other containers
     - DD_AGENT_HOST=dd-agent # allows web container to forward traces to agent
     - DD_SITE=datadoghq.com # determines datadog instance to send data to (e.g change to datadoghq.eu for EU1)
    volumes:
     - /var/run/docker.sock:/var/run/docker.sock
     - /proc/:/host/proc/:ro
     - /sys/fs/cgroup:/host/sys/fs/cgroup:ro

Replace <YOUR_API_KEY> with your API key.

The main changes in the preceding example are the configuration of the DD_AGENT_HOST environment variable, which must be the same for your web container and your Agent container to collect traces. DD_APM_ENABLED enables APM, and DD_APM_NON_LOCAL_TRAFFIC allows the Agent to receive traces from other containers.

This example also adds the ddtrace library to the requirements.txt for the Python web app so that you can initialize it with ddtrace-run to enable APM. (The datadog library mentioned in the following list is used to collect custom DogStatsD metrics.)

flask
redis
datadog
ddtrace <--

Finally, set the service, env, and version tags for your application by modifying the web app’s Dockerfile as follows:

FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt

# This is where you set DD tags
ENV DD_SERVICE web        <-- This sets the "service" name in Datadog
ENV DD_ENV sandbox        <-- This sets the "env" name in Datadog
ENV DD_VERSION 1.0        <-- This sets the "version" number in Datadog

Log collection

The docker-compose.yml can be extended to allow the Datadog Agent to collect container logs.

version: '3'
services:
  redis:
    image: redis
    labels:
      com.datadoghq.ad.logs: '[{"source": "redis", "service": "redis"}]'
  datadog:
    build: datadog
    pid: host
    environment:
     - DD_API_KEY=${DD_API_KEY}
     - DD_SITE=
     - DD_LOGS_ENABLED=true
    volumes:
     - /var/run/docker.sock:/var/run/docker.sock
     - /proc/:/host/proc/:ro
     - /sys/fs/cgroup:/host/sys/fs/cgroup:ro
     - /var/lib/docker/containers:/var/lib/docker/containers:ro

Note: This configuration collects only logs from the Redis container. You can collect logs from the Datadog Agent by adding a similar com.datadoghq.ad.logs label. You can also explicitly enable logs collection for all containers by setting the environment variable DD_LOGS_CONFIG_CONTAINER_COLLECT_ALL to true. See Docker log collection for details.

Further Reading

PREVIEWING: rtrieu/product-analytics-ui-changes