(LEGACY) Set Up Observability Pipelines to Send Logs in Datadog-Rehydratable Format to Amazon S3 and Datadog
Cette page n'est pas encore disponible en français, sa traduction est en cours.
Si vous avez des questions ou des retours sur notre projet de traduction actuel,
n'hésitez pas à nous contacter.
Observability Pipelines is not available on the US1-FED Datadog site.
Si vous mettez à jour la version 1.8 ou antérieure du worker des pipelines d'observabilité vers la version 2.0 ou ultérieure, vos pipelines existants seront interrompus. Ne mettez pas à niveau votre worker des pipelines d'observabilité si vous souhaitez continuer à utiliser la version 1.8 ou antérieure. Si vous souhaitez utiliser la version 2.0 ou ultérieure du worker des pipelines d'observabilité, vous devez migrer les pipelines de la version 1.8 ou antérieure vers les versions 2.x.
Datadog vous recommande d'effectuer la mise à jour vers la version 2.0 ou une version ultérieure. La mise à niveau vers une version majeure et son maintien à jour est le seul moyen d'obtenir les dernières fonctionnalités, corrections et mises à jour de sécurité.
Overview
The Observability Pipelines Worker can collect, process, and route logs from any source to any destination. Using Datadog, you can build and manage all of your Observability Pipelines Worker deployments at scale.
This guide walks you through deploying the Worker in your common tools cluster and configuring it to send logs in a Datadog-rehydratable format to a cloud storage for archiving.
Deployment Modes
La configuration à distance pour les pipelines d'observabilité est disponible en version bêta privée. Contactez l'
assistance Datadog ou votre chargé de compte pour demander à y accéder.
Si vous participez à la version bêta privée de la configuration à distance, vous pouvez déployer à distance des modifications de vos workers depuis l’interface Datadog, plutôt que de mettre à jour la configuration de votre pipeline dans un éditeur de texte, puis de déployer manuellement les changements. Choisissez votre méthode de déploiement lors de la création d’un pipeline et de l’installation de vos workers.
Consultez la rubrique Modifier les modes de déploiement pour découvrir comment modifier le mode de déploiement après le déploiement d’un pipeline.
Assumptions
- You are already using Datadog and want to use Observability Pipelines.
- You have administrative access to the clusters where the Observability Pipelines Worker is going to be deployed, as well as to the workloads that are going to be aggregated.
- You have a common tools cluster or security cluster for your environment to which all other clusters are connected.
Prerequisites
Before installing, make sure you have:
You can generate both of these in Observability Pipelines.
Provider-specific requirements
Ensure that your machine is configured to run Docker.
To run the Worker on your Kubernetes nodes, you need a minimum of two nodes with one CPU and 512MB RAM available. Datadog recommends creating a separate node pool for the Workers, which is also the recommended configuration for production deployments.
The EBS CSI driver is required. To see if it is installed, run the following command and look for ebs-csi-controller
in the list:
kubectl get pods -n kube-system
A StorageClass
is required for the Workers to provision the correct EBS drives. To see if it is installed already, run the following command and look for io2
in the list:
If io2
is not present, download the StorageClass YAML and kubectl apply
it.
The AWS Load Balancer controller is required. To see if it is installed, run the following command and look for aws-load-balancer-controller
in the list:
Datadog recommends using Amazon EKS >= 1.16.
See Best Practices for OPW Aggregator Architecture for production-level requirements.
There are no provider-specific requirements for APT-based Linux.
There are no provider-specific requirements for APT-based Linux.
To run the Worker in your AWS account, you need administrative access to that account and the following information:
- The VPC ID your instances will run in.
- The subnet IDs your instances will run in.
- The AWS region your VPC is located in.
Set up Log Archives
When you install the Observability Pipelines Worker later on, the sample configuration provided includes a sink for sending logs to Amazon S3 under a Datadog-rehydratable format. To use this configuration, create an S3 bucket for your archives and set up an IAM policy that allows the Workers to write to the S3 bucket. Then, connect the S3 bucket to Datadog Log Archives.
See AWS Pricing for inter-region data transfer fees and how cloud storage costs may be impacted.
Create an S3 bucket and set up an IAM policy
Navigate to Amazon S3. Create an S3 bucket to send your archives to. Do not make your bucket publicly readable.
Create a policy with the following permissions. Make sure to update the bucket name to the name of the S3 bucket you created earlier.
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject"],
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
},
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
}
]
}
- Create an IAM user and attach the above policy to it. Create access credentials for the IAM user. Save these credentials as
AWS_ACCESS_KEY
and AWS_SECRET_ACCESS_KEY
.
Navigate to Amazon S3. Create an S3 bucket to send your archives to. Do not make your bucket publicly readable.
Create a policy with the following permissions. Make sure to update the bucket name to the name of the S3 bucket you created earlier.
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject"],
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
},
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
}
]
}
- Create a service account to use the policy you created above.
Navigate to Amazon S3. Create an S3 bucket to send your archives to. Do not make your bucket publicly readable.
Create a policy with the following permissions. Make sure to update the bucket name to the name of the S3 bucket you created earlier.
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject"],
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
},
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
}
]
}
- Create an IAM user and attach the above policy to it. Create access credentials for the IAM user. Save these credentials as
AWS_ACCESS_KEY
and AWS_SECRET_ACCESS_KEY
.
Navigate to Amazon S3. Create an S3 bucket to send your archives to. Do not make your bucket publicly readable.
Create a policy with the following permissions. Make sure to update the bucket name to the name of the S3 bucket you created earlier.
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject"],
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
},
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
}
]
}
- Create an IAM user and attach the policy above to it. Create access credentials for the IAM user. Save these credentials as
AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
.
Navigate to Amazon S3. Create an S3 bucket to send your archives to. Do not make your bucket publicly readable.
Create a policy with the following permissions. Make sure to update the bucket name to the name of the S3 bucket you created earlier.
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject"],
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME_1_/_MY_OPTIONAL_BUCKET_PATH_1>/*"
},
{
"Sid": "DatadogUploadAndRehydrateLogArchives",
"Effect": "Allow",
"Action": "s3:ListBucket",
"Resource": "arn:aws:s3:::<MY_BUCKET_NAME>"
}
]
}
- Attach the policy to the IAM Instance Profile that is created with Terraform, which you can find under the
iam-role-name
output.
Connect the S3 bucket to Datadog Log Archives
You need to connect the S3 bucket you created earlier to Datadog Log Archives so that you can rehydrate the archives later on.
- Navigate to Datadog Log Forwarding.
- Click + New Archive.
- Enter a descriptive archive name.
- Add a query that filters out all logs going through log pipelines so that those logs do not go into this archive. For example, add the query
observability_pipelines_read_only_archive
, assuming that no logs going through the pipeline have that tag added. - Select AWS S3.
- Select the AWS Account that your bucket is in.
- Enter the name of the S3 bucket.
- Optionally, enter a path.
- Check the confirmation statement.
- Optionally, add tags and define the maximum scan size for rehydration. See Advanced settings for more information.
- Click Save.
See the Log Archives documentation for additional information.
Install the Observability Pipelines Worker
The Observability Pipelines Worker Docker image is published to Docker Hub here.
Download the sample pipeline configuration file.
Run the following command to start the Observability Pipelines Worker with Docker:
docker run -i -e DD_API_KEY=<API_KEY> \
-e DD_OP_PIPELINE_ID=<PIPELINE_ID> \
-e DD_SITE=<SITE> \
-e AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID> \
-e AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY> \
-e DD_ARCHIVES_BUCKET=<AWS_BUCKET_NAME> \
-e DD_ARCHIVES_SERVICE_ACCOUNT=<BUCKET_AWS_REGION> \
-p 8282:8282 \
-v ./pipeline.yaml:/etc/observability-pipelines-worker/pipeline.yaml:ro \
datadog/observability-pipelines-worker run
Replace these placeholders with the following information:
<API_KEY>
with your Datadog API key.<PIPELINES_ID>
with your Observability Pipelines configuration ID.<SITE>
with
.AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
with the AWS credentials you created earlier.<AWS_BUCKET_NAME>
with the name of the S3 bucket storing the logs.<BUCKET_AWS_REGION>
with the AWS region of the target service../pipeline.yaml
must be the relative or absolute path to the configuration you downloaded in step 1.
Download the Helm chart values file for AWS EKS.
In the Helm chart, replace these placeholders with the following information:
datadog.apiKey
with your Datadog API key.datadog.pipelineId
with your Observability Pipelines configuration ID.site
with
.${DD_ARCHIVES_SERVICE_ACCOUNT}
in serviceAccount.name
with the service account name.${DD_ARCHIVES_BUCKET}
in pipelineConfig.sinks.datadog_archives
with the name of the S3 bucket storing the logs.${DD_ARCHIVES_SERVICE_ACCOUNT}
in pipelineConfig.sinks.datadog_archives
with the AWS region of the target service.
Install it in your cluster with the following commands:
helm repo add datadog https://helm.datadoghq.com
helm upgrade --install \
opw datadog/observability-pipelines-worker \
-f aws_eks.yaml
Run the following commands to set up APT to download through HTTPS:
sudo apt-get update
sudo apt-get install apt-transport-https curl gnupg
Run the following commands to set up the Datadog deb
repo on your system and create a Datadog archive keyring:
sudo sh -c "echo 'deb [signed-by=/usr/share/keyrings/datadog-archive-keyring.gpg] https://apt.datadoghq.com/ stable observability-pipelines-worker-1' > /etc/apt/sources.list.d/datadog-observability-pipelines-worker.list"
sudo touch /usr/share/keyrings/datadog-archive-keyring.gpg
sudo chmod a+r /usr/share/keyrings/datadog-archive-keyring.gpg
curl https://keys.datadoghq.com/DATADOG_APT_KEY_CURRENT.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
curl https://keys.datadoghq.com/DATADOG_APT_KEY_06462314.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
curl https://keys.datadoghq.com/DATADOG_APT_KEY_F14F620E.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
curl https://keys.datadoghq.com/DATADOG_APT_KEY_C0962C7D.public | sudo gpg --no-default-keyring --keyring /usr/share/keyrings/datadog-archive-keyring.gpg --import --batch
Run the following commands to update your local apt
repo and install the Worker:
sudo apt-get update
sudo apt-get install observability-pipelines-worker datadog-signing-keys
Add your keys and the site (
) to the Worker’s environment variables. Replace <AWS_BUCKET_NAME>
with the name of the S3 bucket storing the logs and <BUCKET_AWS_REGION>
with the AWS region of the target service.
sudo cat <<-EOF > /etc/default/observability-pipelines-worker
AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
DD_ARCHIVES_BUCKET=<AWS_BUCKET_NAME>
DD_ARCHIVES_SERVICE_ACCOUNT=<BUCKET_AWS_REGION>
EOF
Download the sample configuration file to /etc/observability-pipelines-worker/pipeline.yaml
on the host.
Start the worker:
sudo systemctl restart observability-pipelines-worker
Run the following commands to set up the Datadog rpm
repo on your system:
cat <<EOF > /etc/yum.repos.d/datadog-observability-pipelines-worker.repo
[observability-pipelines-worker]
name = Observability Pipelines Worker
baseurl = https://yum.datadoghq.com/stable/observability-pipelines-worker-1/\$basearch/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://keys.datadoghq.com/DATADOG_RPM_KEY_CURRENT.public
https://keys.datadoghq.com/DATADOG_RPM_KEY_4F09D16B.public
https://keys.datadoghq.com/DATADOG_RPM_KEY_B01082D3.public
https://keys.datadoghq.com/DATADOG_RPM_KEY_FD4BF915.public
https://keys.datadoghq.com/DATADOG_RPM_KEY_E09422B3.public
EOF
Note: If you are running RHEL 8.1 or CentOS 8.1, use repo_gpgcheck=0
instead of repo_gpgcheck=1
in the configuration above.
Update your packages and install the Worker:
sudo yum makecache
sudo yum install observability-pipelines-worker
Add your keys and the site (
) to the Worker’s environment variables. Replace <AWS_BUCKET_NAME>
with the name of the S3 bucket storing the logs and <BUCKET_AWS_REGION>
with the AWS region of the target service.
sudo cat <<-EOF > /etc/default/observability-pipelines-worker
AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
DD_ARCHIVES_BUCKET=<AWS_BUCKET_NAME>
DD_ARCHIVES_SERVICE_ACCOUNT=<BUCKET_AWS_REGION>
EOF
Download the sample configuration file to /etc/observability-pipelines-worker/pipeline.yaml
on the host.
Start the worker:
sudo systemctl restart observability-pipelines-worker
- Download the the sample configuration.
- Set up the Worker module in your existing Terraform using the sample configuration. Make sure to update the values in
vpc-id
, subnet-ids
, and region
to match your AWS deployment in the configuration. Also, update the values in datadog-api-key
and pipeline-id
to match your pipeline.
Load balancing
Production-oriented setup is not included in the Docker instructions. Instead, refer to your company’s standards for load balancing in containerized environments. If you are testing on your local machine, configuring a load balancer is unnecessary.
Use the load balancers provided by your cloud provider.
The load balancers adjust based on autoscaling events that the default Helm setup is configured for. The load balancers are internal-facing,
so they are only accessible inside your network.
Use the load balancer URL given to you by Helm when you configure the Datadog Agent.
NLBs provisioned by the AWS Load Balancer Controller are used.
See Capacity Planning and Scaling for load balancer recommendations when scaling the Worker.
Cross-availability-zone load balancing
The provided Helm configuration tries to simplify load balancing, but you must take into consideration the potential price implications of cross-AZ traffic. Wherever possible, the samples try to avoid creating situations where multiple cross-AZ hops can happen.
The sample configurations do not enable the cross-zone load balancing feature available in this controller. To enable it, add the following annotation to the service
block:
service.beta.kubernetes.io/aws-load-balancer-attributes: load_balancing.cross_zone.enabled=true
See AWS Load Balancer Controller for more details.
Given the single-machine nature of the installation, there is no built-in support for load-balancing. Provision your own load balancers using your company’s standard.
Given the single-machine nature of the installation, there is no built-in support for load-balancing. You need to provision your own load balancers based on your company’s standard.
The Terraform module provisions an NLB to point at the instances. The DNS address is returned in the lb-dns
output in Terraform.
Buffering
Observability Pipelines includes multiple buffering strategies that allow you to increase the resilience of your cluster to downstream faults. The provided sample configurations use disk buffers, the capacities of which are rated for approximately 10 minutes of data at 10Mbps/core for Observability Pipelines deployments. That is often enough time for transient issues to resolve themselves, or for incident responders to decide what needs to be done with the observability data.
By default, the Observability Pipelines Worker’s data directory is set to /var/lib/observability-pipelines-worker
. Make sure that your host machine has a sufficient amount of storage capacity allocated to the container’s mountpoint.
For AWS, Datadog recommends using the io2
EBS drive family. Alternatively, the gp3
drives could also be used.
By default, the Observability Pipelines Worker’s data directory is set to /var/lib/observability-pipelines-worker
- if you are using the sample configuration, you should ensure that this has at least 288GB of space available for buffering.
Where possible, it is recommended to have a separate SSD mounted at that location.
By default, the Observability Pipelines Worker’s data directory is set to /var/lib/observability-pipelines-worker
- if you are using the sample configuration, you should ensure that this has at least 288GB of space available for buffering.
Where possible, it is recommended to have a separate SSD mounted at that location.
By default, a 288GB EBS drive is allocated to each instance, and the sample configuration above is set to use that for buffering.
Connect the Datadog Agent to the Observability Pipelines Worker
To send Datadog Agent logs to the Observability Pipelines Worker, update your agent configuration with the following:
observability_pipelines_worker:
logs:
enabled: true
url: "http://<OPW_HOST>:8282"
OPW_HOST
is the IP of the load balancer or machine you set up earlier. For single-host Docker-based installs, this is the IP address of the underlying host. For Kubernetes-based installs, you can retrieve it by running the following command and copying the EXTERNAL-IP
:
kubectl get svc opw-observability-pipelines-worker
For Terraform installs, the lb-dns
output provides the necessary value.
At this point, your observability data should be going to the Worker and then sent along to your S3 archive.
Updating deployment modes
Après avoir déployé un pipeline, vous pouvez également modifier les méthodes de déploiement. Il est ainsi possible de passer d’une gestion manuelle à une configuration à distance, et inversement.
Pour passer d’un déploiement avec une configuration à distance à un déploiement avec une gestion manuelle, procédez comme suit :
- Accédez à Observability Pipelines et sélectionnez le pipeline.
- Cliquez sur l’icône en forme d’engrenage des réglages.
- Dans Deployment Mode, sélectionnez manual pour activer la gestion manuelle.
- Définissez le flag
DD_OP_REMOTE_CONFIGURATION_ENABLED
sur false
et redémarrez le worker. Si vous ne redémarrez pas un worker avec ce flag, la configuration à distance continue à être activée pour celui-ci : il n’est donc pas mis à jour manuellement via un fichier de configuration local.
Pour passer d’un déploiement avec une gestion manuelle à un déploiement avec une configuration à distance, procédez comme suit :
- Accédez à Observability Pipelines et sélectionnez le pipeline.
- Cliquez sur l’icône en forme d’engrenage des réglages.
- Dans Deployment Mode, sélectionnez Remote Configuration pour activer la configuration à distance.
- Définissez le flag
DD_OP_REMOTE_CONFIGURATION_ENABLED
sur true
et redémarrez le worker. Si vous ne redémarrez pas un worker avec ce flag, les configurations déployées dans l’interface ne sont pas récupérées. - Déployez une version de votre historique, afin que les workers reçoivent la nouvelle configuration de version. Cliquez sur une version. Cliquez sur Edit as Draft, puis sur Deploy.
Rehydrate your archives
See Rehydrating from Archives for instructions on how to rehydrate your archive in Datadog so that you can start analyzing and investigating those logs.
Further reading
Documentation, liens et articles supplémentaires utiles: