- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
Code Analysis is in public beta.
To set up Datadog Software Composition Analysis, navigate to Software Delivery > Code Analysis.
SCA scans can be run directly on Datadog’s infrastructure. To get started, navigate to the Code Analysis page.
SCA can be run in your CI pipelines using the datadog-ci
CLI. Configure your Datadog API and application keys (requires the code_analysis_read
scope) and run SCA jobs in the respective CI provider.
See the documentation for your CI provider:
Datadog SCA supports all source code management providers, with native support for GitHub.
If GitHub is your source code management provider, you must configure a GitHub App using the GitHub integration tile and set up the source code integration to see inline code snippets and enable pull request comments.
When installing a GitHub App, the following permissions are required to enable certain features:
Content: Read
, which allows you to see code snippets displayed in Datadog.Pull Request: Read & Write
, which allows Datadog to add feedback for violations directly in your pull requests using pull request comments.If you are using another source code management provider, configure SCA to run in your CI pipelines using the datadog-ci
CLI tool and upload the results to Datadog.
You must run an analysis of your repository on the default branch before results can begin appearing on the Code Analysis page.
추가 유용한 문서, 링크 및 기사: