- 필수 기능
- 시작하기
- Glossary
- 표준 속성
- Guides
- Agent
- 통합
- 개방형텔레메트리
- 개발자
- API
- Datadog Mobile App
- CoScreen
- Cloudcraft
- 앱 내
- 서비스 관리
- 인프라스트럭처
- 애플리케이션 성능
- APM
- Continuous Profiler
- 스팬 시각화
- 데이터 스트림 모니터링
- 데이터 작업 모니터링
- 디지털 경험
- 소프트웨어 제공
- 보안
- AI Observability
- 로그 관리
- 관리
To start with Data Streams Monitoring, you need recent versions of the Datadog Agent and Node.js libraries:
Node.js uses auto-instrumentation to inject and extract additional metadata required by Data Streams Monitoring for measuring end-to-end latencies and the relationship between queues and services. To enable Data Streams Monitoring, set the DD_DATA_STREAMS_ENABLED
environment variable to true
on services sending messages to (or consuming messages from) Kafka.
For example:
environment:
- DD_DATA_STREAMS_ENABLED: "true"
Data Streams Monitoring supports the confluent-kafka library, amqplib package, and rhea package.
Data Streams Monitoring uses one message attribute to track a message’s path through an SQS queue. As Amazon SQS has a maximum limit of 10 message attributes allowed per message, all messages streamed through the data pipelines must have 9 or fewer message attributes set, allowing the remaining attribute for Data Streams Monitoring.
추가 유용한 문서, 링크 및 기사: