To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id
and span_id
into the Datadog format. The following example uses the structlog logging library. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Python application with trace and log correlation in the trace-examples
GitHub repository.
# ########## injection.py
from opentelemetry import trace
class CustomDatadogLogProcessor(object):
def __call__(self, logger, method_name, event_dict):
# An example of adding datadog formatted trace context to logs
# from: https://github.com/open-telemetry/opentelemetry-python-contrib/blob/b53b9a012f76c4fc883c3c245fddc29142706d0d/exporter/opentelemetry-exporter-datadog/src/opentelemetry/exporter/datadog/propagator.py#L122-L129
current_span = trace.get_current_span()
if not current_span.is_recording():
return event_dict
context = current_span.get_span_context() if current_span is not None else None
if context is not None:
event_dict["dd.trace_id"] = str(context.trace_id & 0xFFFFFFFFFFFFFFFF)
event_dict["dd.span_id"] = str(context.span_id)
return event_dict
# ##########
# ########## app.py
import .injection
import logging
import structlog
# Add custom formatting to inject datadog formatted trace ids into logs
structlog.configure(
processors=[
injection.CustomDatadogLogProcessor(),
structlog.processors.JSONRenderer(sort_keys=True)
],
)
log = structlog.getLogger()
log.info("Example log line with trace correlation info")
Alternative approach
You can also use unstructured logs with OpenTelemetry SDK logic to correlate logs and traces in your application.
Note: This approach uses OpenTelemetry-native trace context fields (not dd.trace_id
or dd.span_id
), which can still be correlated in Datadog using remappers. See below for details.
Set up OpenTelemetry logging instrumentation in your Python application:
import logging
from opentelemetry.instrumentation.logging import LoggingInstrumentor
# Initialize the OpenTelemetry logging instrumentation
LoggingInstrumentor().instrument(set_logging_format=True)
# Create a logger instance
logger = logging.getLogger(__name__)
# Log a message with automatic trace context injection
logger.info("This is a log message")
Verify your log format contains the trace context information:
Your logs should now include trace context information and look similar to:
2025-03-25 10:31:52,116 INFO [__main__] [test-logging.py:9] [trace_id=0 span_id=0 resource.service.name= trace_sampled=False] - This is a log message
Or in a real-world scenario:
2025-03-20 12:45:10,123 INFO [jobs.scheduler.task_runner.execute] [task_runner.py:123] [trace_id=123abc456def789ghi012jkl345mno67 span_id=89ab01cd23ef45gh resource.service.name=job_scheduler trace_sampled=True] - STARTED JOB TASK. Success
Create a Log Pipeline in Datadog with this Grok Parser Rule:
# Define prefix components
_timestamp %{date("yyyy-MM-dd HH:mm:ss','SSS"):timestamp}
_level %{word:level}
_module \[%{notSpace:module}\]
_file_location \[%{notSpace:file_location}\]
_trace_info \[trace_id=%{notSpace:trace_id} span_id=%{notSpace:span_id} resource\.service\.name=%{notSpace:service_name} trace_sampled=% {notSpace:trace_sampled}\]
# Complete rule
custom_format %{_timestamp} %{_level} %{_module} %{_file_location} %{_trace_info} - %{data:message}
After setting up the Grok Parser Rule, add the Trace Id Remapper
and Span Id Remapper
processors to your pipeline to extract the trace_id
and span_id
values, respectively. This configuration allows your logs to appear properly correlated with traces in Datadog.
To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id
and span_id
into the Datadog format. The following example uses the winston logging library. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Node.js application with trace and log correlation in the trace-examples
GitHub repository.
// ########## logger.js
// convert to dd with:
// https://github.com/DataDog/dd-trace-js/blob/master/packages/dd-trace/src/id.js
const opentelemetry = require('@opentelemetry/api');
const winston = require('winston')
const tracingFormat = function () {
return winston.format(info => {
const span = opentelemetry.trace.getSpan(opentelemetry.context.active());
if (span) {
const { spanId, traceId } = span.spanContext();
const traceIdEnd = traceId.slice(traceId.length / 2);
info['dd.trace_id'] = BigInt(`0x${traceIdEnd}`).toString();
info['dd.span_id'] = BigInt(`0x${spanId}`).toString();
}
return info;
})();
}
module.exports = winston.createLogger({
transports: [new winston.transports.Console],
format: winston.format.combine(tracingFormat(), winston.format.json())
});
// ##########
// ########## index.js
//
// ...
// initialize your tracer
// ...
//
const logger = require('./logger')
//
// use the logger in your application
logger.info("Example log line with trace correlation info")
To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id
and span_id
into the Datadog format. The following example uses the Ruby Standard Logging Library. For Rails applications or other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Ruby application with trace and log correlation in the trace-examples
GitHub repository.
logger = Logger.new(STDOUT)
logger.progname = 'multivac'
original_formatter = Logger::Formatter.new
logger.formatter = proc do |severity, datetime, progname, msg|
current_span = OpenTelemetry::Trace.current_span(OpenTelemetry::Context.current).context
dd_trace_id = current_span.trace_id.unpack1('H*')[16, 16].to_i(16).to_s
dd_span_id = current_span.span_id.unpack1('H*').to_i(16).to_s
if current_span
"#{{datetime: datetime, progname: progname, severity: severity, msg: msg, 'dd.trace_id': dd_trace_id, 'dd.span_id': dd_span_id}.to_json}\n"
else
"#{{datetime: datetime, progname: progname, severity: severity, msg: msg}.to_json}\n"
end
end
logger.info("Example log line with trace correlation info")
To manually correlate your traces with your logs, first enable the openTelemetry-java-instrumentation Logger MDC Instrumentation. Then, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id
and span_id
into the Datadog format. The following example uses Spring Boot and Logback. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples.
String traceIdValue = Span.current().getSpanContext().getTraceId();
String traceIdHexString = traceIdValue.substring(traceIdValue.length() - 16 );
long datadogTraceId = Long.parseUnsignedLong(traceIdHexString, 16);
String datadogTraceIdString = Long.toUnsignedString(datadogTraceId);
String spanIdHexString = Span.current().getSpanContext().getSpanId();
long datadogSpanId = Long.parseUnsignedLong(spanIdHexString, 16);
String datadogSpanIdString = Long.toUnsignedString(datadogSpanId);
logging.pattern.console = %d{yyyy-MM-dd HH:mm:ss} - %logger{36} - %msg dd.trace_id=%X{datadogTraceIdString} dd.span_id=%X{datadogSpanIdString} %n
See Java Log Collection on how to send your Java logs to Datadog.
To manually correlate your traces with your logs, patch the logging module you are using with a function that translates OpenTelemetry formatted trace_id
and span_id
into the Datadog format. The following example uses the logrus Library.
package main
import (
"context"
log "github.com/sirupsen/logrus"
"go.opentelemetry.io/otel"
"strconv"
)
func main() {
ctx := context.Background()
tracer := otel.Tracer("example/main")
ctx, span := tracer.Start(ctx, "example")
defer span.End()
log.SetFormatter(&log.JSONFormatter{})
standardFields := log.Fields{
"dd.trace_id": convertTraceID(span.SpanContext().TraceID().String()),
"dd.span_id": convertTraceID(span.SpanContext().SpanID().String()),
"dd.service": "serviceName",
"dd.env": "serviceEnv",
"dd.version": "serviceVersion",
}
log.WithFields(standardFields).WithContext(ctx).Info("hello world")
}
func convertTraceID(id string) string {
if len(id) < 16 {
return ""
}
if len(id) > 16 {
id = id[16:]
}
intValue, err := strconv.ParseUint(id, 16, 64)
if err != nil {
return ""
}
return strconv.FormatUint(intValue, 10)
}
Contact Datadog support with any questions.
To manually correlate traces with logs, convert the OpenTelemetry TraceId
and SpanId
into the format used by Datadog. Add those IDs to your logs under the dd.trace_id
and dd.span_id
attributes. The following example uses the Serilog library, and shows how to convert the OpenTelemetry (System.DiagnosticSource.Activity
) trace and span IDs into Datadog’s required format:
var stringTraceId = Activity.Current.TraceId.ToString();
var stringSpanId = Activity.Current.SpanId.ToString();
var ddTraceId = Convert.ToUInt64(stringTraceId.Substring(16), 16).ToString();
var ddSpanId = Convert.ToUInt64(stringSpanId, 16).ToString();
using (LogContext.PushProperty("dd.trace_id", ddTraceId))
using (LogContext.PushProperty("dd.span_id", ddSpanId))
{
Serilog.Log.Logger.Information("Example log line with trace correlation info");
}