If you are using the latest versions of Datadog tracing libraries, Datadog automatically links OpenTelemetry traces and logs using TraceId. If you're using older versions, follow the steps on this page to manually correlate traces and logs.

Connecting OpenTelemetry language SDK logs and traces within Datadog is similar to connecting Datadog SDK logs and traces, with a few additional steps:

  1. OpenTelemetry TraceId and SpanId properties differ from Datadog conventions. Therefore it’s necessary to translate TraceId and SpanId from their OpenTelemetry formats (a 128bit unsigned int and 64bit unsigned int represented as a 32-hex-character and 16-hex-character lowercase string, respectively) into their Datadog Formats(a 64bit unsigned int).

  2. Ensure your logs are sent as JSON, because your language level logs must be turned into Datadog attributes for trace-log correlation to work.

See the following examples for language-specific information about how to correlate your OpenTelemetry traces and logs.

To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id and span_id into the Datadog format. The following example uses the structlog logging library. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Python application with trace and log correlation in the trace-examples GitHub repository.

# ########## injection.py
from opentelemetry import trace

class CustomDatadogLogProcessor(object):
    def __call__(self, logger, method_name, event_dict):
        # An example of adding datadog formatted trace context to logs
        # from: https://github.com/open-telemetry/opentelemetry-python-contrib/blob/b53b9a012f76c4fc883c3c245fddc29142706d0d/exporter/opentelemetry-exporter-datadog/src/opentelemetry/exporter/datadog/propagator.py#L122-L129 
        current_span = trace.get_current_span()
        if not current_span.is_recording():
            return event_dict

        context = current_span.get_span_context() if current_span is not None else None
        if context is not None:
            event_dict["dd.trace_id"] = str(context.trace_id & 0xFFFFFFFFFFFFFFFF)
            event_dict["dd.span_id"] = str(context.span_id)

        return event_dict        
# ##########

# ########## app.py
import .injection
import logging
import structlog
# Add custom formatting to inject datadog formatted trace ids into logs
structlog.configure(
    processors=[
        injection.CustomDatadogLogProcessor(),
        structlog.processors.JSONRenderer(sort_keys=True)
    ],
)

log = structlog.getLogger()

log.info("Example log line with trace correlation info")

Alternative approach

You can also use unstructured logs with OpenTelemetry SDK logic to correlate logs and traces in your application.

Note: This approach uses OpenTelemetry-native trace context fields (not dd.trace_id or dd.span_id), which can still be correlated in Datadog using remappers. See below for details.

  1. Set up OpenTelemetry logging instrumentation in your Python application:

    import logging
    from opentelemetry.instrumentation.logging import LoggingInstrumentor
    
    # Initialize the OpenTelemetry logging instrumentation
    LoggingInstrumentor().instrument(set_logging_format=True)
    
    # Create a logger instance
    logger = logging.getLogger(__name__)
    
    # Log a message with automatic trace context injection
    logger.info("This is a log message")
    
  2. Verify your log format contains the trace context information:

    Your logs should now include trace context information and look similar to:

    2025-03-25 10:31:52,116 INFO [__main__] [test-logging.py:9] [trace_id=0 span_id=0 resource.service.name= trace_sampled=False] - This is    a log message
    

    Or in a real-world scenario:

    2025-03-20 12:45:10,123 INFO [jobs.scheduler.task_runner.execute] [task_runner.py:123] [trace_id=123abc456def789ghi012jkl345mno67    span_id=89ab01cd23ef45gh resource.service.name=job_scheduler trace_sampled=True] - STARTED JOB TASK. Success
    
  3. Create a Log Pipeline in Datadog with this Grok Parser Rule:

    # Define prefix components
    _timestamp %{date("yyyy-MM-dd HH:mm:ss','SSS"):timestamp}
    _level %{word:level}
    _module \[%{notSpace:module}\]
    _file_location \[%{notSpace:file_location}\]
    _trace_info \[trace_id=%{notSpace:trace_id} span_id=%{notSpace:span_id} resource\.service\.name=%{notSpace:service_name} trace_sampled=%   {notSpace:trace_sampled}\]
    
    # Complete rule
    custom_format %{_timestamp} %{_level} %{_module} %{_file_location} %{_trace_info} - %{data:message}
    

After setting up the Grok Parser Rule, add the Trace Id Remapper and Span Id Remapper processors to your pipeline to extract the trace_id and span_id values, respectively. This configuration allows your logs to appear properly correlated with traces in Datadog.

To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id and span_id into the Datadog format. The following example uses the winston logging library. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Node.js application with trace and log correlation in the trace-examples GitHub repository.

// ########## logger.js

// convert to dd with:
// https://github.com/DataDog/dd-trace-js/blob/master/packages/dd-trace/src/id.js
const opentelemetry = require('@opentelemetry/api');
const winston = require('winston')

const tracingFormat = function () {
  return winston.format(info => {
    const span = opentelemetry.trace.getSpan(opentelemetry.context.active());
    if (span) {
      const { spanId, traceId } = span.spanContext();
      const traceIdEnd = traceId.slice(traceId.length / 2);
      info['dd.trace_id'] = BigInt(`0x${traceIdEnd}`).toString();
      info['dd.span_id'] = BigInt(`0x${spanId}`).toString();
    }
    return info;
  })();
}

module.exports = winston.createLogger({
  transports: [new winston.transports.Console],
  format: winston.format.combine(tracingFormat(), winston.format.json())
});

// ##########

// ########## index.js
//
// ...
// initialize your tracer
// ...
// 
const logger = require('./logger') 
//
// use the logger in your application
logger.info("Example log line with trace correlation info")

To manually correlate your traces with your logs, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id and span_id into the Datadog format. The following example uses the Ruby Standard Logging Library. For Rails applications or other logging libraries, it may be more appropriate to modify the Datadog SDK examples. You can also find an example OpenTelemetry instrumented Ruby application with trace and log correlation in the trace-examples GitHub repository.

logger = Logger.new(STDOUT)
logger.progname = 'multivac'
original_formatter = Logger::Formatter.new
logger.formatter  = proc do |severity, datetime, progname, msg|
  current_span = OpenTelemetry::Trace.current_span(OpenTelemetry::Context.current).context
  
  dd_trace_id = current_span.trace_id.unpack1('H*')[16, 16].to_i(16).to_s
  dd_span_id = current_span.span_id.unpack1('H*').to_i(16).to_s
  
  if current_span
    "#{{datetime: datetime, progname: progname, severity: severity, msg: msg, 'dd.trace_id': dd_trace_id, 'dd.span_id': dd_span_id}.to_json}\n"
  else
    "#{{datetime: datetime, progname: progname, severity: severity, msg: msg}.to_json}\n"
  end
end

logger.info("Example log line with trace correlation info")

To manually correlate your traces with your logs, first enable the openTelemetry-java-instrumentation Logger MDC Instrumentation. Then, patch the logging module you are using with a processor that translates OpenTelemetry formatted trace_id and span_id into the Datadog format. The following example uses Spring Boot and Logback. For other logging libraries, it may be more appropriate to modify the Datadog SDK examples.

String traceIdValue = Span.current().getSpanContext().getTraceId();
String traceIdHexString = traceIdValue.substring(traceIdValue.length() - 16 );
long datadogTraceId = Long.parseUnsignedLong(traceIdHexString, 16);
String datadogTraceIdString = Long.toUnsignedString(datadogTraceId);

String spanIdHexString = Span.current().getSpanContext().getSpanId();
long datadogSpanId = Long.parseUnsignedLong(spanIdHexString, 16);
String datadogSpanIdString = Long.toUnsignedString(datadogSpanId);

logging.pattern.console = %d{yyyy-MM-dd HH:mm:ss} - %logger{36} - %msg dd.trace_id=%X{datadogTraceIdString} dd.span_id=%X{datadogSpanIdString} %n

See Java Log Collection on how to send your Java logs to Datadog.

For trace and log correlation in PHP, modify the Datadog SDK PHP examples to include the additional steps discussed above.

Contact Datadog support with any questions.

To manually correlate your traces with your logs, patch the logging module you are using with a function that translates OpenTelemetry formatted trace_id and span_id into the Datadog format. The following example uses the logrus Library.

package main

import (
	"context"
	log "github.com/sirupsen/logrus"
	"go.opentelemetry.io/otel"
	"strconv"
)

func main() {
	ctx := context.Background()
	tracer := otel.Tracer("example/main")
	ctx, span := tracer.Start(ctx, "example")
	defer span.End()

	log.SetFormatter(&log.JSONFormatter{})

	standardFields := log.Fields{
		"dd.trace_id": convertTraceID(span.SpanContext().TraceID().String()),
		"dd.span_id":  convertTraceID(span.SpanContext().SpanID().String()),
		"dd.service":  "serviceName",
		"dd.env":      "serviceEnv",
		"dd.version":  "serviceVersion",
	}

	log.WithFields(standardFields).WithContext(ctx).Info("hello world")
}

func convertTraceID(id string) string {
	if len(id) < 16 {
		return ""
	}
	if len(id) > 16 {
		id = id[16:]
	}
	intValue, err := strconv.ParseUint(id, 16, 64)
	if err != nil {
		return ""
	}
	return strconv.FormatUint(intValue, 10)
}

Contact Datadog support with any questions.

To manually correlate traces with logs, convert the OpenTelemetry TraceId and SpanId into the format used by Datadog. Add those IDs to your logs under the dd.trace_id and dd.span_id attributes. The following example uses the Serilog library, and shows how to convert the OpenTelemetry (System.DiagnosticSource.Activity) trace and span IDs into Datadog’s required format:

var stringTraceId = Activity.Current.TraceId.ToString();
var stringSpanId = Activity.Current.SpanId.ToString();

var ddTraceId = Convert.ToUInt64(stringTraceId.Substring(16), 16).ToString();
var ddSpanId = Convert.ToUInt64(stringSpanId, 16).ToString();

using (LogContext.PushProperty("dd.trace_id", ddTraceId))
using (LogContext.PushProperty("dd.span_id", ddSpanId))
{
    Serilog.Log.Logger.Information("Example log line with trace correlation info");
}

Further Reading

PREVIEWING: jen.gilbert/cdocs-build